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1 Introduction 

Semiparametric estimators using the propensity score to adjust in one way or another 

for covariate differences are now well-established for either estimating causal effects in a 

selection-on-observables framework with discrete treatments or for simply purging the means 

of an outcome variable in two or more subsamples from differences due to observed vari-

ables. 1  Compared to (non-saturated) parametric regressions, they have the advantage of 

including the covariates in a more flexible way without incurring a curse-of-dimensionality 

problem and of allowing for effect heterogeneity. The former problem, which is highly 

relevant due to the usually large number of covariates that should be adjusted for, is tackled 

by collapsing the covariate information into a single parametric function. This function, the 

so-called propensity score, is defined as the probability of being observed in one of two 

subsamples conditional on the covariates. The difference to parametric regression is that this 

parametric function is not directly related to the outcome (as it would be in regression) and 

thus additional robustness with respect to specification issues can be expected. 2  These 

methods originate from the pioneering work of Rosenbaum and Rubin (1983) who show that 

balancing two samples on the propensity score is sufficient to equalize their covariate 

distributions.  

                                                      

1  See for example the recent surveys by Blundell and Costa-Dias (2009), Imbens (2004), and Imbens and Wooldridge 
(2009) for a discussion of the properties of such estimators as well as a list of recent applications. 

2  The propensity-score could also be non-parametrically estimated for maximum robustness. In practice, this is however 
avoided because the dimension of covariates is too large for such an estimator to have desirable properties with the 
samples usually available for such studies. 
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Although many of these propensity-score-based methods are not asymptotically effi-

cient (see for example Heckman, Ichimura, and Todd, 1998, and Hahn, 1998),3 they are the 

work-horses in the literature on microeconometric programme evaluations and are now rap-

idly spreading to other fields. They are usually implemented as semiparametric estimators: the 

propensity score is based on a parametric model, but the relationship between the outcome 

variables and the propensity score is nonparametric. However, despite the popularity of 

propensity-score-based methods, the issue of which version of the many different estimators 

suggested in the literature should be used in a particular type of application is still unresolved, 

despite recent advances in important Monte Carlo studies by Frölich (2004) and Busso, Di-

Nardo and McCrary (2009a,b). In this paper we address this question and add further insights 

to it. 

Broadly speaking, the popular estimators can be subdivided into four classes: Paramet-

ric estimators (like OLS or Probit or their so-called double-robust relatives, see Robins, Mark 

and Newey, 1992), inverse (selection) probability weighting estimators (similar to Horvitz 

and Thompson, 1952) or to the recently introduced version by Graham, Pinto and Egel 

(2011), direct matching estimators (Rubin, 1974, Rosenbaum and Rubin, 1983), and kernel 

matching estimators (Heckman, Ichimura and Todd, 1998).4 However, many variants of the 

estimators exist within each class and several methods combine the principles underlying 

these main classes.  

                                                      

3  See the paper by Angrist and Hahn (2004) for an alternative justification of conditioning on the propensity score by using 
non-standard (panel) asymptotic theory. 

4  There is also the approach of stratifying the data along the values of the propensity score ('blocking'), but this approach 
did not receive much attention in the empirical economic literature and does not have very attractive theoretical properties. 
It is thus omitted (see for example Imbens, 2004, for a discussion of this approach). 
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There are two strands of the literature that are relevant for our research question: First, 

the literature on the asymptotic properties of a subset of estimators provides some approxi-

mate guidance on their small sample properties. Therefore, the next section reviews this litera-

ture while discussing the various estimators. Unfortunately, such properties have not (yet?) 

been derived for all estimators that are used in practice, nor is it obvious how well these 

asymptotic properties approximate small sample behaviour. Furthermore, these results are 

usually not informative for the important choice of tuning parameters (e.g., number of 

matched neighbours, bandwidth selection in kernel matching), on which almost all of these 

estimators critically depend.  

The second strand of the literature provides Monte Carlo evidence on the properties of 

the estimators of the effects.5 As one of the first papers investigating estimators from several 

classes simultaneously, Frölich (2004) found that a particular version of kernel-matching 

based on local regressions with finite sample adjustments (local ridge regression) performs 

best. In contrast, Busso, DiNardo and McCrary (2009a, b) conclude that inverse probability 

weighting (IPW) has the best properties (when using normalized weights for estimation).6 

They explain the differences to the Frölich (2004) study by claiming i) that he considers 

unrealistic data generating processes and ii) that he does not use an IPW estimator with 

normalized weights. In other words, they point to the design dependence of the Monte Carlo 

results as well as to the requirement of having to use optimized variants of the estimators. 

                                                      

5  There are several papers that are not interested in the properties of the estimator of the effects, but only interested in 
quality of covariate balancing achieved by the different matching methods. For example, King, Nielson, Coberley, Pope, 
and Wells (2011) motivate this interest in the fact that matching is not seen as an estimator for an effect, but as a ‘pre-
processor’ that purges the data from differences related to observed covariates. After this preprocessing step, other 
estimators are used with the matched data to obtain the final result. This view is however not our view of matching nor the  
view usually entertained by other econometricians. 

6  Further findings from more specific Monte Carlo studies will be discussed below.  



4 

Below, we argue that their work may be subject to the same criticism. Indeed, it is this criti-

cism that provides a major motivation for our study. 

We contribute to the literature on the properties of estimators based on adjusting for 

covariate differences in the following way: First of all, we suggest a different approach to 

conduct simulations. This approach is based on 'real' data. Therefore, we call our particular 

implementation of this idea an 'Empirical Monte Carlo Study'.7 The basic idea is to use the 

real data to simulate realistic 'placebo treatments' among the non-treated. Selection into treat-

ment, which is potentially of key importance for the performance of the various estimators, is 

based on a selection process directly obtained from the data. The various estimators then use 

the remaining non-treated in different ways to estimate the (known) non-treatment outcome of 

the 'placebo-treated' exploiting the actual dependence of the outcome of interest on the covari-

ates on which selection is based in the data. Thus, this approach is much less prone to the 

standard critique of simulation studies that the chosen data generating processes are irrelevant 

for real applications. Since our model for the propensity score mirrors specifications used in 

past applied work, it depends on many more covariates compared to the studies mentioned 

above. Although this makes the simulation results particularly plausible in our context, which 

is the context of labour market programme evaluation in Europe, this may also be seen as a 

limitation concerning its applications to other fields. Therefore, to help generalize the results 

outside our specific data situation, we further modify many features of the data generating 

process, like the type of the outcome variable and as well as various aspects of the selection 

process.  

                                                      

7  Stigler (1977) is probably the first paper explicitly suggesting a way to do a type of Monte Carlo study with real data (we 
thank a referee of this journal for this reference). See Section 3.1 for more recent references using the same basic idea of 
informing the simulations by real data. 
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Secondly, we consider standard estimators as well as their modified (optimised?) ver-

sions based on different tuning parameters such as bandwidth or radius choice. This leads to a 

great number of estimators to evaluate, but it also provides us with more information on 

particular important choices regarding the parameters on which the various estimators depend. 

Such estimators may also consist of combinations of estimators, like combining matching 

with weighted regression, which have not been considered in any simulation so far.  

Finally, we reemphasise the relevance of trimming to improve the finite sample 

properties of all estimators. The rule we propose is (i) a data driven trimming rule, (ii) easy to 

implement, (iii) identical for all estimators, and (iv) avoids asymptotic bias. We show that for 

all estimators considered, including the parametric ones, trimming based on this rule effec-

tively improves their performance.  

Overall, we find that (i) trimming observations that have 'too large' a weight is impor-

tant for all estimators; (ii) the choices of the various tuning parameters play an important role; 

(iii) simple matching estimators are inefficient and have considerable small sample bias; (iv) 

no estimator is superior in all designs and for all outcomes; (v) inverse probability tilting per-

forms best for a binary outcome but is unsatisfactory for a semi-continuous outcome; (vi) 

particular bias-adjusted radius (caliper) matching estimators perform best on average, but may 

have fat tails if the number of controls is not large enough; and finally, (vii) flexible, but 

simple parametric approaches do almost as well in the smaller samples, because their gain in 

precision frequently compensates (in part) for their larger bias which, however, dominates 

when samples become larger. Strictly speaking these properties relate to our particular data 

generating process (DGP) only. However, at least such a DGP is typical for an important 

application of matching methods, namely labour market evaluations.  

The plan of the paper is as follows: In the next section we discuss the basic setup of 

each of the relevant estimators and their properties, as well as the issue of trimming, while 
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relegating the technical details of the estimators to Appendix A. Section 3 describes our 

Monte Carlo design, again relegating many details as well as descriptive statistics to Appen-

dix B as well as to Appendix C, which contains a description of the support features of our 

data. The main results are presented in Section 4, while the full set of results is given in 

Appendix D. Section 5 concludes and Appendix E contains further sensitivity checks. The 

website of this paper (www.sew.unisg.ch/lechner/matching) will contain additional material 

that has been removed from the paper for the sake of brevity, in particular Appendices B, C, 

D, and E as well as the Gauss, Stata, and R codes for the preferred estimators. 

2 Estimators 

2.1 Notation and targets for the estimation  

The outcome variable, Y, denotes earnings or employment. The group of treated units 

(treatment indicator D=1) are the participants in training in our empirical example. We are 

interested in comparing the mean value of Y in the group of treated (D=1) with the mean 

value of Y in the group of non-treated (D=0), the non-participants, free of any mean differ-

ences in outcomes that are due to differences in the observed covariates X across the groups.8 
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8  As a convention, capital letters denote random variables, while small letters denote particular realisations of the random 
variables. If the small letters are indexed by another small letter, typically i or j, it means that this is the value realised for 
the sample unit i or j. 
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where | 1X Df =  denotes the conditional density of X  and χ  its support. The propensity score is 

defined by ( 1| ) : ( )P D X x p x= = = . The second equality is shown in the seminal paper by 

Rosenbaum and Rubin (1983). 

If there are no other (perhaps unobserved) covariates that influence the choice of the 

different values of D as well as the outcomes that would be realised for a particular value of D 

(the so-called potential outcomes), this comparison of means yields a causal effect, namely 

the average treatment effect on the treated (ATET). This is the mean effect of D on individu-

als observed with D=1. 9 The assumption required to interpret θ  as a causal parameter is 

called either unconfoundedness, the conditional independence assumption (CIA) or selection 

on observed variables (e.g., Imbens, 2004). The plausibility of the CIA depends on the 

particular empirical problem considered and on the richness of the data at hand. That is, in 

labour market applications estimating the effects of training programmes on employment, X  

should include variables reflecting education, individual labour market history, age, family 

status, and local labour market conditions, among others, in order to plausibly justify the CIA 

(e.g. Gerfin and Lechner, 2002). Therefore, in applications exploiting the CIA, X is typically 

of high dimension, as in most cases many covariates are necessary to make this assumption 

plausible. However, for this paper, which focuses on the finite sample properties of estima-

tion, it does not matter whether θ  has a causal interpretation or not. It is important to note 

that other semiparametric estimators also rely on propensity-score-based covariate adjust-

                                                      

9  For reasons of computational costs (which are a severe restriction in our analysis due to the complexity of the design and 
the numbers of estimators) we focus entirely on reweighting the controls towards the distribution of X among the treated. 
Common alternatives are reweighting the treated towards the covariate distribution of the controls, or weighting the 
outcomes of both groups towards the covariate distribution of the population at large. The resulting parameters are called 
the average treatment effect on the non-treated (ATENT) and the average treatment effect (ATE). Estimating the ATENT 
is symmetric to the problem we consider (just recode D as 1-D) and thus not interesting in its own right. The ATE is 
obtained as a weighted average of the ATET and the ATENT, where the weight for the ATET is the share of treated and 
the weight of ATENT is one minus this share. We conjecture that having a good estimate of the components of the ATE 
will lead to a good estimate of the ATE.  
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ments, like, for example, the instrumental variable estimator proposed by Frölich (2007a), the 

decomposition-type of approach suggested by DiNardo, Fortin and Lemieux (1996) and semi-

parametric versions of the difference-in-difference estimator (e.g., Abadie, 2005, Blundell, 

Meghir, Costas Dias, and van Reenen, 2004, Lechner, 2010). 

2.2 General structure of the estimators considered 

As discussed by Smith and Todd (2005), Busso, DiNardo, and McCrary (2009a) and 

Angrist and Pischke (2009) among many others, all estimators adjusting for covariates can be 

understood as different methods that weight the observed outcomes using weights, ˆ iw . 

1 0 1
1 1 11 0

1 1ˆ ˆ ˆ(1 ) , , ,
N N N

i i i i i i i
i i i

d w y d w y N d N N N
N N

θ
= = =

= − − = = −∑ ∑ ∑  (1) 

where N  denotes the sample size of an i.i.d. sample and 1N  is the size of the treated subsam-

ple. Reweighting is required to make the non-treated comparable to the treated in terms of the 

propensity score. See for example the afore-mentioned references for formulas of the weight-

ing functions implied by various estimators. In almost all cases we will set ˆ 1iw =  for the 

treated, i.e. we estimate the mean outcome under treatment for the treated by the sample mean 

of the outcomes in the treated subsample. Therefore, the different estimators discussed below 

represent different ways to estimate [ ( | , 0) | 1]E E Y X D D= = . Following Busso, DiNardo, 

and McCrary (2009a), we normalize the weights of all semi-parametric estimators such that 

10

1 ˆ(1 ) 1
N

i i
i

d w
N =

− =∑ . 

Next, we will briefly introduce the estimators considered in this study, namely inverse 

probability weighting, direct matching, kernel matching, linear and non-linear regressions as 

well as combinations of direct matching and inverse probability weighting with regression. 
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All of these estimators, or at least similar versions of them, have been applied in empirical 

studies,10 which is the motivation for analysing them in this paper. 

2.3 Inverse probability weighting 

As already mentioned, the idea of inverse-probability-of-selection weighting (hence-

forth abbreviated as IPW) goes back to Horvitz and Thompson (1952). IPW can attain the 

semi-parametric efficiency bound derived by Hahn (1998) when using a non-parametric 

estimate of the propensity score. It is generally not efficient when based on the true or a 

parametrically estimated propensity score (see Hirano, Imbens and Ridder, 2003, for results 

and an excellent summary of the literature on the efficiency of IPW).11  

Several IPW estimators for the ATET have recently been analysed by Busso, DiNardo 

and McCrary (2009a, b). In this Monte Carlo study we consider the following implementa-

tion: 

1 11

1

ˆ ( )(1 )
ˆ1 ( )1ˆ
ˆ(1 ) ( )

ˆ1 ( )

i
iN N

i
IPW i i iN

j ji i

j j

p xd
p xd y yd p xN

p x

θ
= =

=

−
−

= −
− ⋅
−

∑ ∑
∑

.  

The normalization 
1

ˆ(1 ) ( )
ˆ1 ( )

N
j j

j j

d p x
p x=

− ⋅

−∑  ensures that the weights add up to one in the 

sample as well as in expectation. This estimator directly reweights the non-treated outcomes 

to control for differences in the propensity scores between treated and non-treated observa-
                                                      

10  For inverse probability weighting see DiNardo, Fortin, and Lemieux (1996), for one-to-one matching Rosenbaum and 
Rubin (1983), for kernel matching see Heckman, Ichimura, and Todd (1998), for caliper matching see Dehejia and Wahba 
(1999), and for double-robust estimation see Robins, Mark, and Newey (1992). Of course, many more studies than those 
mentioned as (early) examples use these estimators in various applications. 

11  Hirano, Imbens, and Ridder (2003) prove that the efficiency bound is reached when the propensity score is estimated non-
parametrically by a particular series estimator. The results by Newey (1984) on two-step GMM estimators imply that IPW 
estimators based on a parametric propensity score are consistent and asymptotically normally distributed (under standard 
regularity conditions). 
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tions. It is the estimator recommended by Busso, DiNardo and McCrary (2009a). When a 

parametric propensity score is used inference for IPW is straightforward, because one could 

either rely, for example, on the GMM methodology (Hansen, 1982), or on the bootstrap. 

This estimator is attractive because it is computationally easy and fast, it is probably 

close to being asymptotically efficient, and (in principle) there is no need to choose any 

tuning parameters. However, there is also evidence that this or related IPW estimators may be 

sensitive to large values of ˆ ( )p x  that might lead to fat tails in its distribution (see, for exam-

ple, Frölich, 2004, as well as the discussion in Busso, DiNardo and McCrary, 2009b). Further-

more, as this estimator exploits the propensity score directly, there is a potential concern that 

it might be more sensitive to small misspecifications of the propensity score than other 

estimators that do not exploit the actual value of the propensity score, but compare treated and 

controls with same value of the score, whatever that value is (e.g., Huber, 2011). 

A method closely related to IPW is inverse probability tilting (IPT), proposed by Gra-

ham, Pinto and Egel (2011). In contrast to conventional IPW, where propensity scores typi-

cally are estimated by maximum likelihood methods (for a correct parametric model maxi-

mum likelihood is efficient for the parameters of the propensity score but not necessarily for 

the ATET estimated by using these scores to form the IPW weights), the propensity score is 

estimated by a particular method of moments estimator. The latter determines the coefficients 

in the propensity score model such that the moments of the covariates in the treated sample 

reweighted by the propensity score exactly coincide with the unweighted moments in the full 

sample. In other words, the estimator satisfies the following moment conditions: 

1
1

1ˆ ( )1
1 ''

ˆ ( )

i
N

i N

i ii i
i

i

d
p x

xd xN
Np x

=
=

 
  
   =        

 

∑ ∑
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The resulting exact balancing property of the propensity score is the key difference to 

standard IPW. Therefore, further refinements are not required, such that the propensity scores 

are plugged into the non-normalized IPW estimator in order to estimate the ATET. Graham, 

Pinto and Egel (2011) argue that IPT is attractive in terms of efficiency and robustness when 

compared to other forms of IPW. 

2.4 Direct matching 

Pair, one-to-one, or single nearest neighbour matching is considered to be the proto-

type of a matching estimator (with replacement)12. The pair matching estimator (PM) is de-

fined as:  

( )
1 : 01

1ˆ ˆ ˆ(1 ) 1 min ( ) ( )
j

N

PM i i i j i j
i j d

d y d p x p x y
N

θ
= =

   = − − −  
    

∑ ∑ . 

1( )⋅  denotes the indicator function, which is one if its argument is true and zero otherwise. 

This estimator is not efficient, as only one non-treated observation is matched to each treated 

observation, independent of the sample size. All other control observations obtain a weight of 

zero even if they are very similar to the observations with positive weight.  

Despite its inefficiency, PM also has its merits. Firstly, using only the closest 

neighbour should reduce bias (at the expense of additional variance). Secondly, PM is likely 

to be more robust to propensity score misspecification than IPW as it remains consistent if the 

misspecified propensity score model is a monotone transformation of the true model (see the 

                                                      

12  'With replacement' means that a control observation can be used many times as a match, whereas in estimators 'without 
replacement' it is used at most once. Since the latter principle works only when there are many more controls than treated, 
it is rarely used in econometrics and will be omitted from this study in which we consider treatment shares of up to 90%. 
For matching without replacement, many more matching algorithms have appeared in the literature that differ on how to 
use the scarce pool of good controls optimally (as they can only be used once). See, for example, Augurzky and Kluve 
(2007) and Hansen (2004) for some discussion of these issues. 



12 

simulation results in Drake, 1993, Zhao, 2004, 2008, Millimet and Tchernis, 2009, and Huber, 

2011, suggesting some robustness to the specification of the propensity score).  

A direct extension of PM is the 1:M propensity score matching estimator which, in-

stead of using just one control, uses several controls. Thus, increasing M increases the preci-

sion but also the bias of the estimator. This class of estimators has been analysed by Abadie 

and Imbens (2009) for the ATE and has been found to be consistent and asymptotically nor-

mal for a given value of M. Yet, it appears that there are no results on how to optimally 

choose M in a data dependent way. Thus, we focus on 1:1 matching, which is the most fre-

quently used variant in this class of estimators. 

The third class of direct matching estimators considered is the one-to-many caliper 

matching algorithm as, for example, discussed by Rosenbaum and Rubin (1985) and used by 

Dehejia and Wahba (1999, 2002). Caliper or radius matching uses all comparison observa-

tions within a predefined distance around the propensity score of each treated unit. This al-

lows for higher precision than fixed nearest neighbour matching in regions of the χ -space in 

which many similar comparison observations are available. Also, it may lead to a smaller bias 

in regions where similar controls are sparse. In other words, instead of fixing M globally, M is 

determined in the local neighbourhood of each treated observation. 

There are further matching estimators evaluated in the literature. For example, Rubin 

(1979) suggested combining PM with (parametric) regression adjustment to take into account 

the fact that treated and controls with exactly the same propensity score are usually very rare 

or non-existent.13 This idea has been taken up again by Abadie and Imbens (2006) who show 

that for a 1:M matching estimator (directly on X) nonparametric regression can be used to 

                                                      

13  This idea has been applied by Lechner (1999, 2000) in a programme evaluation study. 
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remove the bias from the asymptotic distribution that may occur when X is more than one-

dimensional.  

An additional suggestion for improving naïve propensity score matching estimators is 

to use a distance metric that not only includes the propensity score, but in addition those 

covariates that are particularly good predictors of the outcome (in addition to the treatment). 

Since this distance metric has many components, usually a Mahalanobis distance is used to 

compute the distance between the treated and the controls (again, see the discussion in 

Rosenbaum and Rubin, 1985).  

The estimator proposed by Lechner, Miquel and Wunsch (2011) and used in several 

applications by these authors, 14 combines the features of caliper matching with additional 

predictors and linear or nonlinear regression adjustment. After the first step of distance-

weighted caliper matching with predictors (which could be reinterpreted as kernel matching, 

see below, with a truncated triangle kernel15), this estimator uses the weights obtained from 

matching in a weighted linear or non-linear regression in order to remove any bias due to mis-

matches. The matching protocol of this estimator is shown in Appendix A.  

Inference for the matching estimators is usually performed by bootstrap, although the 

results in Abadie and Imbens (2008) suggest at least for (pure) nearest neighbour matching, 

the bootstrap may not be valid. For the case of using a parametric propensity score as in this 

paper, Abadie and Imbens (2009) suggest alternative procedures. 

                                                      

14  See Wunsch and Lechner (2008), Lechner (2009), Lechner and Wunsch (2009a, b), Behncke, Frölich and Lechner (2010a, 
b), and Huber, Lechner and Wunsch (2011). 

15  We thank Jeff Smith for pointing out this relation between kernel and radius matching. 
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2.5 Kernel matching 

Propensity score kernel matching is based on the idea of consistently estimating the 

regression function ˆ[ | 0, ( ) ] : ( )E Y D p X mρ ρ= = =  with the control observations and then 

averaging the estimated function by the empirical distribution of ˆ ( )p X  for the observed 

treated: 

[ ]
11

1ˆ ˆ ˆ( ( ))
N

kernel i i i
i

d y m p x
N

θ
=

= −∑ , 

where ˆ ( )m ⋅  denotes the nonparametrically estimated conditional expectation function. 

Heckman, Ichimura and Todd (1998) is an early example of an analysis of the type of kernel 

regression estimators that could achieve Hahn's (1998) semiparametric efficiency bound if the 

covariates were used directly instead of the propensity score (see also Imbens, Newey and 

Ridder, 2006). Due to the curse-of-dimensionality problem, however, the latter has very 

undesirable small sample properties in a typical application. 

Considering a continuous outcome, Frölich (2004) investigated several kernel match-

ing estimators and found the estimator that is based on ridge regressions to have the best finite 

sample properties. Ridge regression may be considered an extension to local linear kernel 

regression. The latter is superior to the local constant kernel estimator in terms of boundary 

bias (which is the same as in the interior, see Fan, 1992), but is prone to variance problems 

entailing rugged regression curves when data are sparse or clustered (see Seifert and Gasser, 

1996). Therefore, a ridge term is added to the estimator's denominator to avoid division by 

values close to zero (thus in effect dealing with ‘extreme’ observations in a particular way). 

The details of the estimator used in the simulation (including the choice of the bandwidth) can 

be found in Appendix A.2. As we also consider a binary outcome variable (see Section 3.2.3), 

we apply (in addition to ridge regression) kernel matching based on local logit regression as 

used in Frölich (2007b). Note that the latter does not include a ridge term, which is not neces-
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sary because of the finite support of the expectation of the outcome variable (even under very 

large coefficients) due to the logit link function. 

Inference for kernel regression is usually performed by bootstrap methods. 

2.6 Parametric models  

The parametric estimators used here are similar to kernel matching estimators with 

two exceptions. The first difference is that we use a parametric specification for the condi-

tional expectation function, ( )m ⋅ , such as a probit or linear model. The second difference is 

that instead of using the propensity score as regressor, we use the covariates that enter the 

propensity score directly in a linear index specification, as it is done in typical applications.16 

This approach may be regarded as unusually flexible (given how regressions are used in many 

applications) in that estimation only takes place in the non-treated subsample.17 However, 

specifying a joint model for the treated and controls that just includes a treatment dummy is 

unnecessarily restrictive. I.e., it can lead to large biases (because it essentially estimates a 

treatment effect for a different population18) and, thus, is not competitive with the more flexi-

ble semiparametric models consider in this paper. 

We also combine IPW with parametric linear and non-linear regression, an approach 

that has been termed “double-robust regression” (DR) in the (epidemiology) literature. DR 

estimation follows in two steps. First, we run weighted regressions of Y on X in the pool of 

                                                      

16  Using the propensity score as regressor is less attractive in a parametric setting compared to kernel matching, because in 
parametric regressions functional forms play a crucial role, and the propensity score is obviously not an attractive choice 
because it does not relate the variation of the covariates directly to the variation of the outcome variables. Furthermore, the 
curse of dimensionality problem is less relevant in parametric regressions. 

17  We also examined a specification that uses a regression model for the treated, too. However, as the results are almost 
identical, we do not consider this case explicitly. 

18  For the linear model, details can be found in Angrist (1998) and Angrist and Pischke (2009). 
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non-treated individuals, where the weights are proportional to 
ˆ ( )

ˆ1 ( )
i

i

p X
p X−  

. This reweights the 

controls according to the distribution of ˆ ( )p X  among the treated. Second, let ˆ ˆ( , ( ))g x p x  de-

note the weighted predicted outcome under non-treatment, which is the estimate of 

( )( , ( )) : ( )
1 ( )

p xg x p x q x
p x

=
−

, ( ( ) :q x = ( | , 0))E Y X x D= = . After an appropriate specification of 

the model for the conditional expectation of the outcome, ( )q x , the DR estimator of the 

ATET is given by: 

[ ]
11

1ˆ ˆ ˆ( , ( )) .
N

DR i i i i
i

d y g x p x
N

θ
=

= −∑
 

This estimator possesses the double robustness property as it remains consistent if ei-

ther the model for the propensity score or the regression model, or both, are correctly speci-

fied. However, the estimator is not necessarily efficient if misspecification appears in one of 

the models.19 

The parametric estimators have the advantage that they are very easy to compute, their 

asymptotic properties are well known, inference procedures are usually known and reliable, 

they are efficient if correctly specified, they do not depend on tuning parameters, and they 

may be used to impute counterfactuals outside the common support, i.e. they can be used even 

if the propensity cannot be estimated (which may happen if one variable is a perfect predictor 

of the treatment status). Clearly, the disadvantage is their sensitivity to the correct specifica-

tion of the models involved. 
                                                      

19  Robins, Rotnitzky and Zhao (1994) and Robins and Rotnitzky (1995) show that DR is semi-parametrically efficient if 
both model components are correctly specified (see also the discussions in Robins, Mark, and Newey, 1992, Scharfstein, 
Rotnitzky, and Robins, 1999, Hirano and Imbens, 2001, Lunceford and Davidian, 2004, Bang and Robins, 2005, and 
Wooldridge, 2007, as well as the introduction into these methods by Glynn and Quinn, 2010). Concerning the robustness 
of regressions, the paper by Kline (2011) shows that linear regressions also have DR properties related to a propensity 
score that is linear in the covariates. 
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3 The simulation design 

3.1 Basic idea 

A typical Monte Carlo study specifies the data generation process of all relevant ran-

dom variables and then conducts estimation and inference from samples that are generated by 

independent draws from those random variables based on pseudo random number generators. 

The advantage of such a design is that all dimensions of the true data generating process 

(DGP) are known and can be used for a thorough comparison with the estimates obtained 

from the simulations. However, the disadvantage is that the DGPs are usually not closely 

linked to real applications in terms of the number and types of variables used for covariates 

and outcomes. Furthermore, the outcome and selection processes are also quite arbitrary 

(irrespective of the fact that the respective papers usually claim that their design reflects the 

key features of the applications they have in mind).20 Given that the results in the literature 

mentioned above suggest that the small sample behaviour of some of the estimators is design 

dependent, we propose an alternative method that we call an Empirical Monte Carlo Study 

(EMCS).  

The idea of an EMCS is to base the DGP not entirely on relations specified by the re-

searcher, but to exploit real data instead as much as possible, e.g. to use observed outcomes 

and covariates instead of simulated ones as well as an observed selection process. Of course, 

this approach has its limits as the researcher still requires the ability to control some key 

parameters, such as, for example, the share of the treated or the sample size, to allow for some 

generalizations. Furthermore, the data must be very large to be able to treat the sample as 

                                                      

20  All Monte Carlo studies mentioned here suffer from this problem. They are also more restrictive on many other, usually 
computationally expensive dimensions, like the types of estimators, the sample sizes, and the number of covariates 
considered. 
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coming from an infinite population and it has to be relevant for the estimators under investiga-

tion. That is, it should be a typical data set for countries whose governments provide rich 

individual data for evaluation purposes, like for example the German-speaking and the Nordic 

countries. Of course, it is exactly in this case of informative individual data when matching 

becomes an attractive evaluation method. 

Since the estimators we consider are heavily used for the evaluation of active labour 

market programmes for the unemployed based on (typically European) administrative data, 

we choose a large German administrative data set as our population. Our EMCS basically 

consists of three steps: First, we estimate the propensity score in the 'population' and use it as 

the true propensity score for the simulations. Second, we draw a sample of control observa-

tions, simulate a (placebo-) treatment for this draw, and estimate the effects with the different 

estimators for this sample. By definition, the true effect of this treatment is zero. Third, we 

repeat the second step many times to evaluate the performance of the estimators. 

In other contexts related ideas appeared in the literature. For example Bertrand, Duflo, 

and Mullainathan (2004) use so-called placebo-laws (i.e. artificial law changes that never hap-

pened in the real world) to investigate inference procedures for difference-in-difference 

estimators. Abadie and Imbens (2002) and Diamond and Sekhon (2008) use a data generating 

process that tries to closely mimic the LaLonde (1986) National Supported Work (NSW) data 

to investigate the performance of a new class of matching estimators. Lee and Whang (2009) 

draw samples from the NSW data to study the performance of tests for zero treatment effects. 

Finally, Khwaja, Salm, and Trogdon (2010) use simulated data coming from a structural 

model to evaluate the performance of treatment effect estimators. 

Our EMCS approach is also closely related to the literature that examines the proper-

ties of estimators based on how capable they are of reproducing the results of an experimental 

control group, see for example LaLonde (1986), Heckman, Ichimura, Smith, and Todd 
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(1998), Dehejia and Wahba (1999, 2002), Smith and Todd (2005), Dehejia (2005), Zhao 

(2006), Flores and Mitnik (2009), and Jacob, Ludwig and Smith (2009). There are at 

least two important advantages of the EMCS compared to this approach if used for comparing 

estimators based on the same identifying assumptions. Firstly, because EMCS repeatedly 

draws subsamples from the population, it allows the distribution of the estimators to be fully 

recovered.21 Secondly, probably the most important advantage of using EMCS is that it allows 

varying many parameters of the DGP, in particular the selection process and the sample size. 

Of course, if large experimental data is available, it could also fruitfully be used to implement 

an EMCS-type approach. 

3.2 The population 

In the next subsections we present the details of how the EMCS is implemented. We 

begin by describing the properties of the 'population' on which all our simulations are based. 

3.2.1 Data 

The data comprise a 2% random sample drawn of all German employees subject to so-

cial insurance.22 They cover the period 1990-2006 and combine information from different 

administrative sources: (1) records provided by employers to the social insurance agency for 

each employee (1990-2006), (2) unemployment insurance records (1990-2006), (3) the pro-

gramme participation register of the Public Employment Service (PES, 2000-2006) as well as 

(4) the jobseeker register of the PES (2000-2006). Finally, a variety of regional variables has 

been matched to the data using the official codes of the 439 German districts. These include 

information about migration and commuting, average earnings, unemployment rate, long-term 

                                                      

21  When comparing an observational and an experimental control group for the US JTPA programme, Plesca and Smith 
(2007) obtain the distribution of their estimators in a related manner by bootstrap methods. 

22  This covers 85% of the German workforce. It excludes the self-employed as well as civil servants.  



20 

unemployment, welfare dependency rates, urbanisation codes, and measures of industry struc-

ture and public transport facilities. 

For each individual the data comprise all aspects of their employment, earnings and UI 

history since 1990 including the beginning and end date of each spell, type of employment 

(full/part-time, high/low-skilled), occupation, earnings, type and amount of UI benefit, and 

remaining UI claim. Moreover, they cover all spells of participation in the major German la-

bour market programmes from 2000 onwards with the exact start date, end date and type of 

programme as well as the planned end date for the training programmes. The jobseeker regis-

ter contains a wealth of individual characteristics, including date of birth, gender, educational 

attainment, and marital status, number of children, age of youngest child, nationality, occupa-

tion, the presence of health impairments and disability status. With respect to job search the 

data contain the type of job looked for (full/part-time, high/low-skilled, occupation), whether 

the jobseeker is fully mobile within Germany and whether she has health impairments that 

affect employability.  

This data was the basis of several evaluation studies thus far23 and is fairly typical for 

the administrative data bases that are available in several European countries to evaluate the 

effects of active labour market policies. 

3.2.2 Sample selection and treatment definition 

As we are interested in evaluating typical labour market programmes in a representa-

tive industrialized economy we exclude East Germany and Berlin from the analysis since they 

are still affected by the aftermath of reunification. We start with a sample that covers all en-

tries into unemployment in the period 2000-2003. Then, we exclude unemployment entries in 

                                                      

23  See Hujer, Caliendo and Thomsen (2004), Hujer, Thomsen and Zeiss (2006), Caliendo, Hujer and Thomsen (2006, 2008a, 
b), Wunsch and Lechner (2008), Lechner and Wunsch (2009a), and Hujer and Thomsen (2010). 
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January-March 2000 because with programme information starting only in January 2000 we 

want to make sure that we do not accidentally classify entries from employment programmes 

(which we would consider as unemployed) as entries from unsubsidized employment because 

the accompanying programme spell is missing. Entries after 2003 are not considered to ensure 

that we have at least three years after starting unemployment to observe the outcomes.  

We further restrict the analysis to the prime-age population aged 20-59 in order to 

limit the impact of schooling and (early) retirement decisions. To make our sample more 

homogeneous we also require that individuals were not unemployed or in any type of labour 

market programme (including subsidized employment) in the last 12 months before becoming 

unemployed. Finally, we exclude the very few cases whose last employment was any non-

standard form of employment such as internships.  

As in Lechner, Miquel and Wunsch (2011) and Lechner and Wunsch (2009b) we de-

fine participants (treated) as all of those individuals in our sample who start training courses 

that provide job-related vocational classroom training 24  within the first 12 months of 

unemployment. The non-treated are those who did not participate in any programme of the 

active labour market policy whatsoever in the same period. There are 3'266 treated and 

114'349 controls. 

3.2.3 Descriptive statistics 

The upper part of Table 3.1 presents descriptive statistics for the two outcome vari-

ables we considered: average monthly earnings over the 3 years after entering unemployment, 

and an indicator whether there has been some (unsubsidized) employment in that period. This 

choice has been made to evaluate the estimators' performance with both a variable with only 

                                                      

24  The programs we consider correspond to general training in Wunsch and Lechner (2008) and to short and long training in 
Lechner, Miquel and Wunsch (2011). 
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two support points and a semi-continuous variable (50% zeros). Furthermore, the table con-

tains the descriptive statistics for the 38 confounders that are taken into consideration in the 

selection equation. Among those are also eight interaction terms, which will be used later on 

to judge the robustness of the estimators with respect to functional misspecification of the 

propensity score. 

To describe selectivity, Table 3.1 also contains the normalized differences between 

treated and controls as well as the marginal effects of the covariates at the means of all other 

covariates according to the estimation of the true propensity score. Both results suggest that 

there is a substantial amount of selectivity that is, however, not captured by a single variable, 

but by several variables. This view is also confirmed by considering the last two lines of this 

table which display the normalized differences for the estimated propensity score as well as 

its linear index. Not surprisingly, those summary measures show much higher selectivity than 

the single variables, despite the low pseudo-R2 of about 4%, which is, however, in the range 

common to such studies. 25 

                                                      

25  Table B.1 in Appendix B.1 shows the results of a probit and linear regression using, respectively, employment and 
earnings as dependent variables and the covariates as independent variables to confirm that the latter do not only 
determine selection but are also related to the outcomes in a way such that confounding takes place. 
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Table 3.1: Descriptive statistics of the 'population' 

Variable Treated Control Standardized 
difference 

Probit est. of 
selection equat. 

 mean std. Mean std. in % Marg.eff. in % std. error 
3 years since beginning of UE spell 
 some unsubsidized employ. 

.63 0.56 .48 0.50 9 - - 

 av. monthly earnings (EUR) 1193 1041 1115 1152 9 - - 
Constant term - - - - - - - 
Age / 10 3.6 3.5 0.84 1.1 8 7.3 0.5 
… squared / 1000 1.4 1.4 0.63 0.85 3 -9.1 0.6 
    20 - 25 years old 0.21 binary 0.41  22 0.9 0.2 
Women 0.57 .46 0.50 0.50 15 -5.8 1.5 
Not German 0.11 binary 0.31  16 -0.5 0.1 
Secondary degree 0.32 binary 0.47  15 1.1 0.1 
University entrance qualification 0.29 binary 0.45  15 1.0 0.1 
No vocational degree 0.18 binary 0.39  26 -0.3 0.1 
At least one child in household 0.42 binary 0.49  22 -0.2 0.1 
Last occupation: Non-skilled worker 0.14 binary 0.35  13 0.3 0.1 
Last occupation: Salaried worker 0.40 binary 0.49  29 1.8 0.2 
Last occupation: Part time 0.22 binary 0.42  12 2.1 0.3 
UI benefits: 0 0.33 binary 0.47  16 -0.6 0.1 
                   > 650 EUR per month 0.26 binary 0.44  7 0.7 0.1 
Last 10 years before UE: share empl. 0.49 0.46 0.34 0.35 8 -1.4 0.2 
              share unemployed 0.06 0.05 0.11 0.11 1 -2.5 0.5 
              share in programme 0.01 0.01 0.04 0.03 9 5.1 1.2 
Last year before UE: share marg. em.* 0.07 0.03 0.23 0.14 15 -1.0 0.7 
       share part time 0.16 0.11 0.33 0.29 10 -1.0 0.2 
       share out-of-the labour force (OLF) 0.28 0.37 0.40 0.44 14 -1.3 0.2 
Entering UE in 2000 0.26 binary 0.44  13 1.6 0.2 
                        2001 0.29 binary 0.46  5 0.9 0.1 
                        2003 0.20 binary 0.40  12 0.0 0.1 
Share of pop. living in/ close to big city 0.76 0.73 0.35 0.37 6 0.4 0.1 
Health restrictions 0.09 binary 0.29  13 -0.6 0.1 
Never out of labour force 0.14 binary 0.34  6 0.6 0.2 
Part time in last 10 years 0.35 binary 0.48  9 -0.5 0.1 
Never employed 0.11 binary 0.31  17 -1.0 0.1 
Duration of last employment > 1 year 0.41 binary 0.49  4 -0.6 0.1 
Average earnings last 10 years when 
employed / 1000 

 
0.59 

 
0.52 

 
0.41 

 
0.40 

 
13 -0.4 0.2 

Women x age / 10 2.1 1.7 1.9 1.9 17 2.6 0.6 
    x squared / 1000 0.83 0.64 0.85 0.90 15 -2.6 0.8 
    x no vocational degree 0.09 binary 0.28  15 -0.9 0.1 
    x at least one child in household 0.32 binary 0.47  25 0.9 0.2 
    x share minor employment last year 0.06 0.02 0.22 0.13 16 3.2 0.7 
    x share OLF last year 0.19 0.18 0.36 0.35 3 1.0 0.2 
    x average earnings last 10 y. if empl. 0.26 0.19 0.34 0.30 16 -1.0 0.2 
    x entering UE in 2003 0.10 binary 0.30  6 -0.6 0.1 

ˆ
ix β  -1.7 0.42 -2.1 0.42 68 - - 

ˆ( )ix βΦ  0.06 0.03 0.05 0.03 59 - - 
Number of obs., Pseudo-R2 in % 3266  114349   3.6  
Note:  * Marg(inal) em(ployment) is employment with earnings of no more than 400 EUR per month, which are not or only 

partially subject to social insurance contributions. 'binary': indicates a binary variable (standard deviation can be di-
rectly deduced from mean). β̂  is the estimated probit coefficients and ( )aΦ  is the c.d.f. of the standard normal 
distribution evaluated at a. Pseudo-R2 is the so-called Efron's R2 [ ] ( )( )1 1 1

ˆ1 ( ) /N N N
i i i ii i i

d p x d d N
= = =

 − − − ∑ ∑ ∑ . The 

Standardized Difference is defined as the difference of means normalized by the square root of the sum of esti-
mated variances of the particular variables in both subsamples (see e.g. Imbens and Wooldridge, 2009, p. 24). 
Marg. effect: Average marginal effect based on discrete changes for binary variables and derivatives otherwise. 
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3.3 The simulations in detail 

After having estimated the propensity in the full population (see Table 3.1), the treated 

are discarded and no longer play a role in the following simulations.26 The next step is to draw 

the individual random sample of size N from the population of non-treated (independent 

draws with replacement). For the sample sizes we choose 300, 1'200, and 4'800. The motiva-

tion for the smallest sample size is that semiparametric methods are not expected to perform 

well (and are rarely used in applications) for small samples.27 The choice of the largest sample 

size on the other hand is heavily influenced by the computational burden it creates, because 

several of the estimators used are computationally expensive. 28  Furthermore, the largest 

sample should be small compared to our population of 114'349 controls. If an estimator does 

not perform well with this comparatively large sample (much larger than in other Monte Carlo 

studies), a researcher planning to use this estimator might be worried anyway even if a larger 

sample would be available (as is the case in several recent labour market evaluations). One 

the other hand, if an estimator performs well for this sample size, i.e. is close to its asymptotic 

distribution, we expect it to perform similarly or even better for larger sample sizes. As all 

estimators are N − convergent, increasing sample sizes by a factor of four should reduce the 

standard error by 50% (in large samples). Thus, this choice facilitates checking whether the 

estimators already attain this asymptotic convergence rate in finite samples. 

                                                      

26  The GAUSS code used to generate the simulated data is available from the authors on request. The pseudo random 
number generator used in all simulations is the one implemented in Gauss 9.0. 

27  Note that the simulations in Busso, DiNardo, and McCrary (2009a, b) are based on sample sizes of 100 and 500, which is 
much more convenient with respect to computational burden. However, with the number of covariates usually found in 
applications using matching estimators, it is very difficult if not impossible to estimate the propensity score with 100 
observations with some precision. 

28  Computation for one specification with the large sample size can take up to 3 weeks on a standard PC of 2010 vintage. 



25 

Having drawn the sample, the next step consists of simulating treated observations in 

this sample. We base this simulation step on the propensity score that has been estimated in 

the population and can be computed for each individual as ˆˆ ( ) ( )i i ip x x β= Φ , where ( )Φ ⋅  de-

notes the cumulative distribution function of the standard normal distribution, ix  is the ob-

served covariate value of observation i (including the constant), and β̂  are the estimated 

parameters. Our baseline specification is (almost) based on using ˆ ( )i ip x  for the simulation of 

the treatment.  

However, there are at least two dimensions we want to influence because of their 

important heterogeneity in applications. First of all, the shares of treated observations are 

10%, 50%, and 90%. The smallest share is much smaller than those usually found in Monte 

Carlo studies, but is chosen because small shares of treated frequently occur in applications.29 

The largest share, on the other hand, mimics the situation when the role of treated and con-

trols is reversed as in the estimation of the average treatment effect on the non-treated. The 

second dimension that varies considerably among applications and may also have a great im-

pact on the relative performance of the estimators is the magnitude of the selection, for exam-

ple measured in terms of the pseudo-R2 of the propensity score or its normalized difference 

(see Table 3.2). We consider (i) the benchmark case of random assignment, (ii) selection that 

corresponds roughly to the one in our 'population' and (iii) a case of very strong selection.  

The resulting scenarios are implemented based on the following equation: 

{ }ˆ1( 0), (0,1), 0,1, 2.5 ,i i i id x u u Nλ β α λ= + + > ∈:  

                                                      

29  Even our smallest share used in the simulations is larger than the share of treated observed in our population, which is just 
3%. However, using 3% instead of 10% would have required a further increase in sample sizes and would have put too 
much additional demand on computation time. 
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where iu  denotes a standard normally distributed i.i.d. random number, λ  is a parameter 

with three different values that determine the magnitude of selection, and the parameter α  is 

chosen such that the expected number of treated equals 10%, 50%, or 90%, respectively.30 

Table 3.2 summarizes the 21 scenarios that are used in the EMCS and also gives summary 

statistics about the amount of selection implied by each scenario.31  

Note that this simulation routine always ensures common support, at least in expecta-

tion. Table C.1 and Figures C.1 to C.18 (internet Appendix C) document the overlap in the 

'population'. One result that follows from this table and the figures is that in particular when 

strong selection is combined with the large share of treated, overlap of the distributions of the 

propensity score in the treated and control sample becomes very thin in the right tail of the 

treated population. 

Table 3.2: Summary statistic of DGP's 

Magnitude of 
selection 

Share of 
treated in % 

Standardized 
difference of 

p-score 

Pseudo-R2 of 
probit in % 

Sample size  

Random 10 0 0         1200, 4800 
 50 0 0 300, 1200, 4800 
 90 0 0         1200, 4800 

Observed 10 0.5 6        1200, 4800 
 50 0.4 10 300, 1200, 4800 
 90 0.5 6         1200, 4800 

Strong 10 1.1 27        1200, 4800 
 50 0.8 36 300, 1200, 4800 
 90 0.8 27         1200, 4800 

Note: See note of Table 3.1.  

In addition, note that it is not possible to combine the small sample size with the ex-

treme shares of participants. This would frequently include cases in which the number of 

                                                      

30  Note that the simulations are not conditional on D. Thus, the share of treated is random.  

31  The standardized differences as well as the pseudo-R2s are based on a re-estimated propensity score in the population with 
simulated treated (114'349 obs.). However, when reassigning controls to act as simulated treated this changes the control 
population. Therefore, this effect, and the fact that the share of treated differs from the original share leads to different 
values of those statistics even in the case that mimics selection in the original population. 
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covariates exceeds the number of treated or non-treated observations, thus, posing numerical 

problems on the estimation of the propensity score. Hence, in the small sample the uncon-

ditional treatment probability is 0.5, which also makes small sample issues concerning the 

common support unproblematic. 

Since the true effect is always zero, one might worry that our results are specific to the 

case of effect homogeneity which would be of less practical relevance. This is, however, not 

the case as we estimate the average treatment on the treated (ATET). The ATET has two 

components: the expected potential outcome of the treated under treatment and under no treat-

ment. Here, the former is always estimated in the same way, namely as the mean observed 

outcome of the treated.32 The non-treatment potential outcome of the treated is imputed by the 

different estimators we consider using the outcome from the non-treated only. Without loss of 

generality, we can model the potential treatment outcome as the sum of the potential non-

treatment outcome and a possible heterogeneous effect that may or may not depend on the 

covariates. However, as this effect only concerns the observed outcomes of the treated, it will 

asymptotically not affect our relative comparison of estimators (see Tables D.1 to D.3 in 

internet Appendix D: even in finite samples the best estimator for a given DGP is in most 

cases the same with and without effect heterogeneity). The only exception is that the trimming 

rule used may be sensitive to this homogeneity assumption. However, finding the most effec-

tive trimming rule is beyond the scope of the paper. 

Another parameter of the EMCS, as in any Monte Carlo study, is the number of 

replications. Ideally, one would choose a number as large as possible to minimize simulation 

noise. Simulation noise depends negatively on the number of replications and positively on 

                                                      

32  For some parametric models, different regressions were run in both subsamples of treated and non-treated (instead of 
using the mean of the treated). However, they are almost identical to the version of taking means for the treated and 
running the regression for the non-treated only. 
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the variance of the estimators. Since the latter is doubled when the sample size is reduced by 

half, and since simulation noise is doubled when the number of replications is reduced by half 

(at least for averages over the i.i.d. simulations), we chose to make the number of replications 

proportional to the sample size. For the smallest sample, we use 16'000 replications, for the 

medium sample 4'000, and for the largest sample 1'000, as the latter is computationally most 

expensive and has the least variability of the results across different simulation samples. 

4 Trimming 

From equation (1) we see that all estimators can be written as the mean outcome of the 

treated minus the weighted outcome of the non-treated observations. By the nature of this 

estimation principle, the weights of the non-treated are not uniform (except in the case of ran-

dom assignment in which they should be very similar even in the smallest sample). They de-

pend on the covariates via the propensity score. If particular values of p(x) are rare among the 

controls and common among the treated, such control observations receive a very large 

weight in all estimators of the ATET. Consider the extreme case that all treated observations 

have a value of p(x) = 0.99. However, there is only one non-treated observation with such a 

value (and no other 'similar' non-treated observations). For most of the semiparametric 

estimators this observation will receive a weight of one (or very close to one) and the remain-

ing non-treated observations a weight of (almost) zero. Thus, such estimators have an infinite 

variance because they are based on the mean of effectively only one observation. As the sam-

ple grows, by the definition of the propensity score, there will be more non-treated observa-

tions with p(x) = 0.99 (on average, for every 99 additional treated with p(x) = 0.99, there will 

be one additional control with p(x) = 0.99) and the problem becomes less severe. 

This suggests that the properties of the estimators deteriorate when single observations 

obtain 'too' large weights and start to dominate the estimator (and its variance). Indeed, the 



29 

Monte Carlo simulations strongly suggest that this intuition is correct.33 However, removing 

such observations with a (non-normalized) weight larger than a given value (for example de-

fined in terms of p(x)) comes at the cost of incurring potential asymptotic bias, if it does not 

disappear fast enough with increasing sample size. When treated observations are removed 

based on a fixed cut-off value of p(x), the population underlying the definition of the ATET 

changes. When control observations are removed, we may not be able to reweight the controls 

successfully towards the distribution of the covariates observed for the treated. Therefore, we 

suggest setting all weights to zero if their share of the sum of all weights is larger than t%, i.e. 

| 0
1

1 (1 ) %
i

N

i d i i j j
j

w w w d w t=
=

 
= − ≤ 

 
∑ . After this step, the remaining weights are normalized 

again.34 This correction disappears as the sample increases as each sample unit has asymptoti-

cally no influence on the estimator (at least with discrete covariates). Indeed, such a sugges-

tion was already made by Imbens (2004, p. 23) to account for common support problems. It is 

important to note that all estimators, whether they are parametric or semiparametric, are 

treated exactly the same way: Control observations are removed if their IPW weights are 

above the threshold (and treated are adjusted accordingly). 
                                                      

33  We thank an anonymous referee for pointing out that this has been shown formally by Chen, Hong and Tarozzi (2008) in 
a related setting. These authors suggest a regression‐like approach which is less likely to have extreme weights. 
Furthermore, note the similarity between our approach of removing observation with a 'too high' weight, and thus with the 
largest influence on the predicted mean potential non-treatment outcome, and the literature on robust statistics (e.g. Huber 
and Ronchetti, 2009) in which many approaches aim at reducing the impact of single observations when they become too 
influential. The fact that the approaches developed in this literature (for different estimation problems) are far more 
sophisticated than our naïve, but effective, approach, suggest that it should be possible to improve upon our approach in 
future work. This is however beyond the scope of this paper. A referee also pointed us to the work of Hill and Renault 
(2010) who use the same motivation to trim moment conditions in a GMM time series framework. 

34  To avoid a severely unbalanced sample induced by trimming, we also remove all treated observations with a value of p(x) 
larger then smallest value of p(x) among the control observations removed by this trimming rule (if such observations 
exist at all). Tables C.3 and C.4 in internet Appendix C.2 describe how many treated are affected for the particular 
samples. Not surprisingly the share is the larger the higher the trimming level, the smaller the sample, the larger the share 
of the treated and the stronger the selection process (see also the discussion in the next section). Table E.1 in internet 
Appendix E shows the effect of removing the treated on the estimators for the most critical DGP, the one with heavy 
selection and a large share of treated. We see that removing the treated together with the controls is indeed critical, as 
there might be a substantial bias for all estimators otherwise. 
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As suggested by the discussion above and in Imbens (2004), trimming is also relevant 

to the common support problem and the 'thin-support' problem recently looked at by Khan 

and Tamer (2009). The key conceptional difference to our trimming rule is that support issues 

are asymptotic problems while we are concerned with a small sample adjustment only.35 The 

common support problem has been discussed by many authors (see the surveys by Heckman, 

LaLonde, and Smith, 1999, Imbens, 2004, and Imbens and Wooldridge, 2009). Recently, 

Crump, Hotz, Imbens, and Mitnik (2009) propose removing treated observations with 'ex-

treme' values of the propensity score to improve the precision of the estimator (they recom-

mend using only values of p(x) below 0.9). Of course, at the same time this procedure in-

creases the bias (or changes the estimated parameter by implicitly changing the reference 

population, which is the same), which will remain asymptotically. There have been different 

proposals in the literature on how to tackle the common support problem, but they all share 

the feature that they will lead to asymptotic bias,36 or give up point identification (Lechner, 

2008). In contrast, trimming based on our suggestion vanishes as the sample size increases 

such that the estimation is asymptotically unbiased.   

                                                      

35  From a practical point of view, our analysis can be seen as a comparison of the performance of different estimators after 
the common support has been enforced. Investigating different ways of ensuring common support is beyond the scope of 
this paper. Tables C.2 and C.3 in internet Appendix C.2 give more details on maximum weights that follow from this 
procedure as well as about support issues in the samples used (by checking how many treated were located to the right of 
the largest control observation after enforcing the different trimming rules). The lower panel of Table E.2 in internet 
Appendix E shows the effect of using a stricter rule for the treated, namely removing all treated with a larger p-score than 
the largest p-score of any control remaining after trimming. However, when applying this stricter rule, the results do not 
change much. 

36  See the excellent discussion of this issue by Busso, DiNardo, and McCrary (2009a). They use four different trimming 
rules to improve e common support in their Monte Carlo study: the method proposed by Dehejia and Wahba (1999), 
which is based on comparing the maximum values of p(x) among the treated and controls; the method proposed by 
Heckman, Ichimura, Smith, and Todd (1998), which is based on requiring a minimum density of p(x); the method brought 
forward by Ho, Imai, King, and Stuart (2007) which defines the common support as the convex hull of p(x) used by pair 
matching; and the proposal by Crump, Hotz, Imbens and Mitnik (2009) already mentioned. They conclude that none of 
the proposals works in the case of heterogeneous treatment effects. Some of them seem to work for some estimators in the 
case of homogeneous effects.  
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Khan and Tamer (2009) analyse the problems that may appear for estimators adjusting 

for covariate differences if identification requires estimation in what they call thin-support 

regions. Such regions of the covariate space could occur, for example, when one of the 

covariates has infinite support. This might result in very large (infinite) weights leading to a 

reduction of the convergence rates together with numerical instability in small samples. Khan 

and Tamer (2009) develop a new inference routine to account for this abnormal behaviour. 

Again, this is essentially an asymptotic problem. In contrast, trimming in our simulation 

merely tackles 'too' large weights in finite samples as there is no asymptotic support problem 

by the definition of the propensity score. 

5 Results 

In this section, we first discuss several issues concerning the implementation of the 

various estimators (5.1). After that, the results are discussed, beginning with issues that con-

cern all estimators simultaneously, like the impact of different features of the data generating 

process, the specification of the propensity score and the trimming (5.2). Then, we analyse 

implementational issues that are specific to the particular classes of estimators considered 

(5.3). Finally, we compare the best estimators across the different classes to come to an over-

all conclusion (5.4). 

When discussing the results, most of our conclusions come from analysing the root 

mean squared error (RMSE) of the estimators. Among other information, internet Appendix D 

contains additional information with respect to the absolute bias and the standard deviation of 

the estimators, which sometimes will be useful to better understand the effect on the RMSE. 

Since there might be a concern that in particular for small samples some of the estimators 

have no moments, we also verified our main results based on the mean absolute error. There 

were no substantial differences (for details, again, see internet Appendix D). Furthermore, 
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additional sensitivity checks with respect to trimming and specifications of the score are con-

tained in internet Appendix E. 

5.1 Implementation of estimators 

While Section 2 contains the general principles underlying the different classes of 

estimators, we present the details for the particular versions of the estimators, as implemented 

in the simulations, in this section as well as in Appendix A. 

5.1.1 All estimators 

All estimators are based on (i) a correctly specified model for the propensity score and 

on (ii) a functionally misspecified model where all eight interaction terms and the two terms 

capturing non-linearities in age are omitted in the estimation. This is most likely a 

misspecification that frequently occurs in applications and some robustness in that direction is 

desirable. This specification problem is relevant as the variables are jointly highly significant 

in the propensity score as well as in the outcome equations based on Wald-statistics (see Ta-

ble B.2 in Appendix B.2).  

The same trimming rule is used for all estimators by setting t to 4%, and 6% (and 

100% for the untrimmed case). This trimming rule is directly based on the propensity score, 

i.e. the weight that is used in the IPW estimator.37 The main reason is computational speed, as 

estimator-specific rules would require additional computational steps in a simulation study 

that is already computationally extremely expensive. A further motivation is that this rule is 

very easy to implement in applications and that the weights used by the other (consistent) 

estimators should be at least asymptotically similar to the IPW weights. 
                                                      

37  The rule is only applied once and not iteratively. Thus, in the trimmed sample the weights may be above the threshold. 
Table C.3 and C.4 in the internet Appendix C show the largest weights used in the particular setting after trimming. The 
largest weight in the untrimmed is around 21% and drops to 6% after trimming (heavy selection, large share of treated, 
smaller sample), but in most DGP’s the levels and the differences of the weights are much smaller.  
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5.1.2 Inverse probability weighting and tilting 

The IPW and IPT estimators described in Section 2 are implemented as stated (there 

are no tuning parameters to choose). The IPW is the version that performed well in Busso, 

DiNardo and McCrary (2009a, b). 

5.1.3 Direct matching 

We consider the following types of propensity score matching estimators: Pair-match-

ing, radius matching and radius matching with linear and non-linear post-matching regres-

sions. Before looking at these estimators in turn, let us discuss other features that have been 

varied but are common to all estimators: (i) To measure the distance between observations we 

consider the propensity score as well as its linear index (this monotone transformation may 

matter at the boundary of the propensity score where the c.d.f. is highly non-linear); (ii) We 

also use matching estimators that use a Mahalanobis matching framework in which the 

propensity score or its linear index is supplemented by two covariates, namely the indicator 

variable for being female, and average earnings in the 10 years before becoming unemployed. 

Both are good predictors of post-training earnings and employment as well as programme 

participation (they are jointly significant in the participation and both outcome equations 

based on Wald tests; see Table B.2 in Appendix B.2). 

Radius matching requires defining a radius, or caliper size, in terms of the distance be-

tween treated and non-treated. Since no well established algorithm exists, we follow Lechner, 

Miquel and Wunsch (2011) who suggest defining the caliper size in terms of the largest dis-

tance calculated from pair-matching. Here, we use half that distance, as well as 1.5 and three 

times that distance. If a caliper is empty, which may happen only in the first case, the nearest 

neighbour is chosen. When computing the local mean of the outcome variables in a caliper, 

the observations within the caliper are weighted proportionally to the inverse of their distance 

to the respective treated they are matched to. 
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Finally, radius matching is combined with linear regression (both outcomes) or logit 

regression (employment only) to remove bias due to mismatch as explained above. See 

Appendix A.1 for all details. In total we consider 48 matching estimators for employment and 

32 matching estimators for earnings. 

The final remark concerns the use of matching estimators: to foster computational effi-

ciency in a very demanding simulation exercise (in particular for the large sample size), we 

remove some variants that are clearly dominated by similar ones. To be specific, we discard 

all radius matching estimators matching only on the propensity score or its linear index, 

respectively, as they are always dominated by the Mahalanobis distance-based versions which 

additionally include the two covariates. 

5.1.4 Kernel matching 

The details on ridge regression matching are presented in Appendix A.2. The main 

feature we vary is the bandwidth. Starting with the value suggested by least squares cross-

validation, we also take one third of and three times that value. Furthermore, we use a 

Silverman (1986) type rule of thumb for the Epanechnikov kernel. The reason for considering 

different values of the bandwidth is that, intuitively, the cross-validation bandwidth is optimal 

for the regression curve but not for the particular average of it that enters the ATET, see also 

the discussion in Frölich (2005) and Imbens and Wooldridge (2009). 38 Therefore, one would 

expect that some undersmoothing is optimal (although this turns out to rarely be the case in 

the simulation). In addition, it is interesting to see the sensitivity of the estimator with respect 

to the important bandwidth choice decision. Furthermore, for the binary outcome an estimator 
                                                      

38  Frölich (2005) offers a plug-in method for optimal bandwidth selection in kernel matching based on an approximation of 
the mean squared error. However, based on his simulations he concludes that the approximation is not sufficiently 
accurate for the sample sizes he considered (200, 1000). For this reason, we do not implement his procedure for 
bandwidth selection. As an alternative, Frölich (2005) also considers conventional cross-validation and finds that it  
performs rather well in his simulations, even though asymptotically it does not provide the optimal bandwidth. 
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based on a local logit instead of a local linear specification is also used. In total we have eight 

estimators for the binary outcome and four estimators for the semi-continuous outcome. 

5.1.5 Parametric models 

The parametric models generally consist of two versions: one that is applied just to the 

non-treated (whereas for the treated, simply their sample average outcome is computed), and 

another one that also includes a separate parametric model for the treated. As expected, these 

two versions lead to almost identical results.  

We consider several model choices. Firstly, a linear regression model is used for both 

the binary and the semi-continuous outcome variable even though this constitutes a 

misspecification in both cases (due to bounded theoretical support and a mass point at zero, 

respectively). Therefore, we also use a tobit model both estimated by maximum likelihood 

(henceforth simply referred to as tobit) as well as in its control function form (i.e., the heckit 

model; see Heckman, 1976) for earnings, as well as a probit model for the binary employment 

outcome. Finally, we use flexible data-driven OLS and probit estimation that selectively adds 

higher order and interaction terms to chose the optimal model with respect to minimization of 

the corrected Akaike information criterion (AIC). This basic implementation of sieve regres-

sion, see for instance Chen (2007), is outlined in Appendix E.  

In total we use 7 estimators for employment and 8 estimators for earnings (two ver-

sions of OLS, probit or heckit and tobit, respectively, flexible probit/OLS estimation based on 

the corrected AIC, and DR estimation based on probit or heckit and OLS, respectively, that 

weights the regression by 
ˆ ( )

ˆ1 ( )
i

i

p X
p X−

).39 

                                                      

39  Since heckit turned out to be very unstable for the smaller samples, DR with OLS was included for earnings as well, 
despite its misspecification for the semi-continuous outcome. For the latter reason DR based on OLS was not used for the 
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5.2 Results for features that concern all estimators 

There is a wealth of information produced by the Monte Carlo study. For the employ-

ment and earnings outcomes we have more than 5700 and 3700 data points, respectively, for 

each measure of estimator quality we consider. Thus, we have to summarise this information. 

We do so by using linear regression analysis in which the features of the DGPs, the propensity 

score specifications, and the outcome variables used are coded as covariates (partially inter-

acted). Due to the large expected heterogeneity and non-linearity, this analysis is conducted 

within strata defined by the sample size and classes of estimators.40  

Table 5.1 (employment) and Table 5.2 (earnings) contain the coefficients of the 

regression results for the root mean squared error, whereas the results for the bias and the 

standard deviation are relegated to internet Appendix D.2 (Tables D.4 and D.5 for employ-

ment and Tables D.6 and D.7 for earnings). 

5.2.1 Strength of selection and share of treated 

The upper panels of those tables contain indicator variables for the magnitude of the 

selection and the share of the treated (the medium cases being the references).41 We find that 

the RMSE increases in the strength of selection and the sources appear to be both the bias and 

the precision of the estimators. When looking at the 10% and 50% shares of treated, this result 

is mainly driven by precision, while the impact of the strength of selection on the bias in-

creases when the number of control observations is reduced further.  

                                                                                                                                                                      

binary outcome, for which DR with probit works fine. Finally, as both the maximum likelihood and heckit estimators of 
the tobit model appear to be uncompetitive compared to OLS (see Table D.8 in internet Appendix D), a DR version of the 
maximum likelihood version was not computed. 

40  This approach is very similar to ideas underlying meta-analysis which uses regression techniques to summarize the results 
of different studies (for a recent application in programme evaluation see Card, Kluve and Weber, 2010). 

41  The tobit and heckit estimators turned out to be highly unstable for the earnings outcome for the small and intermediate 
sample sizes. Therefore, these estimators are excluded from the regressions. 
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Considering the influence of the share of the treated, the results are again clear-cut: a 

balanced sample leads to the lowest RMSE. In particular for the sample with very few control 

observations, there is a significant small sample bias for all types of estimators. 

Table 5.1: Features of the estimators by OLS regression for employment outcome 

Variables (all indicators) IPW Kernel Matching Parametric 
Sample Size 300 1200 4800 300 1200 4800 300 1200 4800 300 1200 4800 

Constant 5.9 3.0 1.0 7.1 3.1 1.3 7.1 3.6 2.0 7.1 4.1 1.3 
 Features of the data generating process 
Selection:  Random (-1.3) -1.0 (-0.7) -0.8 -0.8 -0.9 -1.0 -0.9 -0.8 -1.0 (-1.0) -0.7 
  Observed 0 0 0 0 0 0 0 0 0 0 0 0 
  Strong 3.4 2.8 2.8 2.8 2.7 2.5 2.5 2.5 2.4 2.3 2.8 1.9 
Share treated:  10% - 1.0 (0.5) - 1.3 0.6 - 1.7 0.6 - 1.8 0.5 
  50% 0 0 0 0 0 0 0 0 0 0 0 0 
  90% - 3.8 2.3 - 3.3 2.1 - 4.4 2.1 - 4.2 1.7 
 Features of the estimators 
Misspecified p-score (0.7) (0.6) 1.1 -0.8 0.2 1.1 -0.8 (-0.2) 0.8 -0.3 (-0.3) 0.9 
No trimming  0 0 0 0 0 0 0 0 0 0 0 0 
Trimming max 6% (1.5) (0.5) 0.8 -0.5 -0.3 (-0.0) -0.8 -0.9 -0.1 -0.7 -1.3 (-0.1) 
Trimming max 4% (-0.9) (-0.8) (-0.3) -0.7 -0.4 (-0.1) -1.0 -1.1 -0.2 -0.9 -1.4 (-0.2) 
Inverse probability tilting (1.3) (-0.1) (-0.4)          
Bandwidth:    Low    (0.2) (0.2) (0.0)       
    Cross validation    0 0 0       
    High    -0.6 (-0.2) (-0.0)       
    Rule of thumb    (0.3) (0.1) (0.0)       
    Local logit    0.9 0.3 (-0.1)       
Nearest neighbour       2.7 1.6 0.2    
Radius matching:  Radius low       0.8 (0.3) (-0.1)    
       medium       0 0 0    
       large       (-0.0) (0.1) (0.1)    
No adjustment       0 0 0    
Regression adjustment       0.7 0.5 -0.9    
Logit adjustment       -0.8 -1.0 (0.1)    
PScore instead of linear index       (0.1) (0.1) (0.1)    
Regression for treated           (-0.0) (0.4) (0.1) 
Robust          0.4 (-0.5) (0.1) 
Probit          (-0.0) (-0.8) (-0.2) 
 Statistics 
R2 (in %) 54 67 58 74 82 74 73 59 70 88 33 75 
Number of observations 36 108 108 144 432 432 540 1620 1620 108 324 324 
Note:  Dependent variable: RootMeanSquaredError. The two larger samples also contain additional data generating 

processes. The largest sample is based on a reduced number of estimators. All coefficients are in %. Coefficients 
that are not significant at the 5% level (conventional OLS standard errors) appear in parentheses. 

5.2.2 Functional misspecification of the propensity score 

A functional misspecification which leads to an inconsistent estimation of the propen-

sity score leads to an increase of the bias (at least for the larger samples) and to a reduction of 

the variance (probably because the misspecified propensity score depends on fewer variables 

and may thus be more precisely estimated) of the estimators. Considering the joint impact on 

the RMSE, we find that in the smallest sample the gain in precision due to the misspecifica-

tion dominates, while in the largest sample the bias dominates. In the final section, we discuss 
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this issue again to see whether the different estimators are affected differently by this kind of 

misspecification. 

5.2.3 Trimming 

Before presenting the results of the different estimators for different levels of trim-

ming, it seems worth investigating how many observations are trimmed depending on the fea-

tures of the DGPs and the levels of trimming. The details are provided in Tables C.2 to C.4 in 

internet Appendix C. 

Table 5.2: Analysis of features of matching estimators by OLS regression: Earnings 

Variables (all indicators) IPW Kernel Matching Parametric*) 
Sample Size 300 1200 4800 300 1200 4800 300 1200 4800 300 1200 4800 
Constant (168) (60) 28 171 83 34 180 104 62 171 117 33 
 Features of the data generating process 
Selection:  Random (-95) (-79) -21 -32 -29 -27 -36 -39 -30 -34 (-30) -25 
  Observed 0 0 0 0 0 0 0 0 0 0 0 0 
  Strong (155) 105 73 65 69 72 63 63 69 82 134 63 
Share treated:  10% - (25) (11) - 31 13 - 40 12 - (30) (8) 
  50% 0 0 0 0 0 0 0 0 0 0 0 0 
  90% - 233 58 - 70 55 - 99 50 - 163 42 
 Features of the estimators 
Misspecified p-score 165 (65) 23 (-3) 11 23 -9 7 32 (-13) (-33) 33 
No trimming  0 0 0 0 0 0 0 0 0 0 0 0 
Trimming max 6% (-141) (-88) (17) (-8) -9 (-2) -24 -26 (-4) -29 -89 (-4) 
Trimming max 4% (-143) (-78) (-9) -15 -13 (-3) -32 -34 -6 -36 -95 (-5) 
Inverse probability tilting 204 95 (-9)          
Bandwidth: Low    (-7) (-0) (3)       
 Cross validation    0 0 0       
 High    -13 (-4) (0)       
 Rule of thumb    (2) (0) (1)       
Nearest neighbour       56 29 -12    
Radius matching:  Radius low       16 (5) (-3)    
       medium       0 0 0    
       large       (-1) (4) 7    
Regression adjustment       (-0) (-6) -36    
PScore instead of linear index       (3) (2) (-1)    
Regression for treated           (-0) (1) (0) 
Robust          37 (29) (2) 
 Statistics 
R2 (in %) 43 37 60 89 83 73 70 60 72 73 26 78 
Number of observations 36 108 108 72 216 216 360 1080 1080 72 216 216 
Note:  Dependent variable: RMSE. The two larger samples also contain additional data generating processes. The largest 

sample is based on a reduced number of estimators. Coefficients that are not significant at the 5% level (conven-
tional OLS standard errors) appear in parentheses. 
*): Heckit and Tobit estimates are very unstable and therefore excluded from the regressions presented in this table 
(see Table D.8 in internet Appendix D for details).  

By construction, the number of trimmed observations decreases with an increasing 

level of the threshold. However, even for a level of 4%, in the worst case no more than 4.3 

control observations are trimmed on average. In all other cases, this number is considerably 
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lower. Thus, very few control observations are trimmed by this rule, but of course these are 

the control observations with the largest influence on the final estimate.  

Although only few control observations are trimmed, the regressions suggest that 

moving from no trimming to discarding all observations with weights larger than 6% leads to 

a considerable reduction in the RMSE. A trimming rule with a lower maximum weight (4%) 

still decreases the RMSE, but only by a small amount. The RMSE reduction is driven by a 

reduction in the small sample bias and in the variance. 

The effects of trimming are very much DGP dependent. Under those features of the 

DGP that entail the largest deletion of observations (strong selection and small share of con-

trols), the effects of trimming seem to be unambiguously positive and large in that both bias 

and variance are reduced. In the other cases (in which trimming really does not change much 

as extreme weights rarely occur), these findings hold only for the smallest sample (if at all). 

We conclude that trimming in the proposed way seems to be very effective in cases where it is 

most needed, while it does not hurt much in the other scenarios. This issue of trimming will 

be taken up again when considering selected single estimators in detail in section 5.4.  

5.3 Estimator-specific issues  

5.3.1 Inverse probability weighting and tilting 

Tables 5.1 and 5.2 reveal that in small samples, inverse probability weighting (IPW) 

seems to dominate inverse probability tilting (IPT) in terms of RMSE because of its better 

bias and variance properties (see Tables D.4-D.7 in Appendix D). For large samples, how-

ever, the converse holds due to the lower finite sample bias of IPT. These features will be-

come more obvious (and more differentiated) from the direct comparison of these two estima-

tors that is contained in section 5.4. 
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5.3.2 Direct matching 

When comparing nearest neighbour matching to the other direct matching estimators 

we replicate the result frequently found in the literature: although being the least biased for all 

sample sizes nearest neighbour matching is not competitive in terms of RMSE, because of its 

substantially larger variability. Yet, for the largest sample, which has a sample size that was 

not considered in other relevant studies, we obtain a surprising result: as the absolute differ-

ence in precision is reduced due to the general decrease of the variance with increasing sam-

ple size (all variances tend to zero asymptotically), the better bias properties become more 

important as the bias become more relevant. Despite this feature, the results later on will show 

that nearest neighbour matching is still dominated by other matching methods. 

Considering the caliper size for radius matching, the findings are again in line with our 

expectations: The smaller the caliper, the larger the variance and the smaller the bias. With 

respect to the post-matching regression adjustment, we observe a similar phenomenon: the 

bias is reduced but the variance increases and the regression adjustments become more 

attractive as the sample gets larger. For the binary outcome, the logit adjustment is superior to 

the linear regression adjustment, at least for the smaller samples. 

The results concerning the inclusion of additional covariates in Mahalanobis matching 

are similar in the sense that the variance is reduced and the bias (somewhat) increased. In our 

simulations the gains in precision dominate.42 Finally, using the linear index instead of the 

propensity score does not have much of an effect at all. 

                                                      

42  To save computation time the matching estimators without including additional covariates in a Mahalanobis metric have 
only been computed for the small and medium sized samples. In those simulations they have always been dominated by 
the versions that include the covariates. Therefore, the former are not considered in the tables of this section that are only 
based on estimators computed for all sample sizes. 
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5.3.3 Kernel matching 

Although the results for the different bandwidths are not really clear-cut, on average 

choosing the largest bandwidth (here, three times of what is suggested by least squares cross-

validation) seems to be the dominant strategy. We will take up that issue again in the next 

section. Concerning the issue whether to use the local logit or local linear regression for the 

binary outcome, the results suggest that local logit performs only slightly better in the larger 

sample, whereas local linear regression dominates over all. In conclusion, this estimator does 

not appear to be sensitive to reasonably chosen smoothing parameters. 

5.3.4 Parametric models 

Among the parametric models, standard probit and OLS are the preferred choices for 

the employment and earnings outcome, respectively, in terms of the RMSE. It may seem 

surprising that OLS is superior to the tobit and heckit estimators in the earnings regressions 

despite the mass point at zero and that both OLS and probit generally outperform DR 

procedures. A closer inspection of the results shows that the disappointing performance of the 

DR and tobit/heckit estimators is rooted in their comparably large variances in the small and 

medium samples, in particular when the share of treated is high (and thus the number of 

controls on which these regressions are based is very small). In particular the heckit-based DR 

estimators seem to suffer from numerical instabilities when the number of observations is too 

small. This is also suggested by its 'non-normal' empirical distribution. Therefore, the 

tobit/heckit estimators are not considered in the regressions presented in Table 5.2, 43 but their 

standard versions are compared to OLS in Table D.8 of the internet Appendix D. Even 

                                                      

43  See also Kang and Schafer (2007) who examine the finite sample behaviour of DR estimators in a missing data context 
using up to 1000 observations. None of the investigated DR methods outperform the simple regression-based prediction of 
the missing values. Therefore, the authors conclude that using two incorrect models in DR estimation is not necessarily 
better than a regression based on just one wrong specification.   
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without heckit, DR does not appear attractive because of its larger variability compared to 

standard regression (or IPW, see below). A further result that may come as a surprise is that 

standard OLS and probit perform clearly better in terms of RMSE than flexible estimation 

based on the corrected AIC (the results of which are not reported, but available on request). 

Finally, estimating an additional model for the treated, too, does not change the results in any 

relevant way. 

5.4 Comparisons across different classes of estimators 

Having compared the different features of the estimators and the DGPs within classes 

of estimators, we now move to comparisons across classes. The aim is to come to a final 

conclusion about which estimator appears to be most suitable for particular applications. 

Therefore, for a selected group of estimators Tables 5.3 to 5.5 present the difference in %-

points of RMSE relative to the best estimator (which is marked 'B' if it is part of the group of 

estimators considered in the table), as well as the bias, the standard deviation, the skewness 

and the kurtosis of the estimators’ Monte Carlo distributions. The latter two statistics are in-

cluded to see whether there are any important deviations from normality which may cause 

problems for inference. Large values of the kurtosis are also a good indicator of estimator 

instability leading to important outliers, which is very undesirable in empirical applications. 

To be able to present the results in a concise way, we have selected estimators that 

dominate their respective class of estimators. Dominance is judged on the basis of the RMSE 

and is defined in a two-step procedure within the class of estimators (direct matching / IPW-

IPT / kernel / parametric). First, a minimum requirement is imposed: For each scenario the 

best estimator is determined and estimators are grouped according to the distance to that 

estimator (0-25%, 25%-100%, > 100%). To be considered further, estimators have to be in the 
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best group in at least half of the cases and never be in the worst group. Among that group, we 

choose the best estimators in terms of average RMSE.44 

The dominant estimator is regression-adjusted radius matching (using linear regression 

for earnings and logit for employment) with additional predictors based on the linear index 

and using the large radius. Even though it is not competitive, we also consider simple pair-

matching based on the propensity score, in that it represents a benchmark frequently used in 

practice. Concerning the class of kernel matching estimators, there was no clear-cut winner 

with respect to the bandwidth selection rules. Therefore, we present the results for the estima-

tors with the largest and the smallest bandwidth to be able to consider the sensitivity in that 

respect in greater detail. As local linear regression is (slightly) superior to local logit for the 

employment outcome, all results in the tables refer to the former method. Among the parame-

tric methods, the non-weighted OLS and probit estimators are the best, closely followed by 

the probit and OLS DR-versions that are presented as well.  

The comparison across classes starts by taking up the issue of trimming again. Table 

5.3 shows the results without trimming as well as for two different levels of trimming, aver-

aged over all DGPs separately for the correctly and incorrectly specified propensity score. 

The relative RMSEs refer to the best estimator under any trimming rule. 

Trimming is indeed important for the correctly specified as well as the misspecified 

model. On average, all estimators but IPT unambiguously benefit from trimming in terms of 

bias, precision, skewness and kurtosis, particularly in the case of the semi-continuous out-

come. When moving from no trimming to 6% the gains appear fairly large, while trimming 

                                                      

44  Obviously, these criteria are arbitrary, but they insure that estimators perform reasonably in a large group of DGP's and 
specifications. The final conclusions are not very sensitive to how the respective groups are formed and which exact 
shares are imposed. For IPT the criteria have been weakened as there are not so many versions of weighting estimators. 
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further observations using the 4% cut-off value only leads to small additional gains (with the 

exception of IPT).  

Table 5.3: Comparison of the properties of the selected estimators: trimming 

 
Employment Earnings 

   
Kernel Matching Probit   

 
Kernel Matching OLS 

 
IPW IPT high low logit pair 

 
DR IPW IPT high low OLS pair 

 
DR 

Propensity score correctly specified 
Without trimming 

RelRMSE 39 12 16 26 16 93 10 28 46 80 16 35 36 101 62 144 
Bias 0.5 0.9 1.0 1.5 0.9 0.3 0.9 0.9 10 27 29 39 23 5 29 9 
Std. dev. 5.1 3.9 4.1 4.2 4.1 7.1 3.9 4.6 129 154 93 109 117 178 137 216 
Skew. 0.1 0.0 0.0 0.0 0.1 0.2 0.0 0.0 -0.4 -3.5 0.0 -0.2 -0.4 -0.2 -2.8 -2.8 
Kurtosis 3.4 3.0 3.0 3.7 3.0 3.2 3.0 3.2 4.7 218 3.1 3.6 7.0 3.4 172 173 

Trimming level 6% 
RelRMSE 11 40 9 16 9 70 2 10 12 49 7 22 12 73 3 21 
Bias 0.3 0.5 0.7 1.1 0.8 0.2 0.6 0.5 7 9 21 30 10 4 23 6 
Std. dev. 4.1 5.1 3.9 4.0 3.9 6.2 3.7 4.0 99 131 90 100 98 153 86 108 
Skew. 0.0 0.1 0.0 0.0 0.1 0.2 0.0 0.0 -0.1 -0.4 0.0 -0.1 -0.3 -0.2 0.0 -0.1 
Kurtosis 3.0 3.4 3.0 3.4 3.0 3.3 3.0 3.0 3.1 5.2 3.1 3.5 7.5 3.6 5.2 7.4 

Trimming level 4% 
RelRMSE 7 2 7 14 7 61 B 7 7 15 4 18 4 63 B 15 
Bias 0.2 0.6 0.7 1.0 0.7 0.1 0.5 0.5 6 21 19 27 8 3 22 5 
Std. dev. 3.9 3.7 3.9 3.9 3.9 5.9 3.6 3.9 94 97 88 96 92 145 84 101 
Skew. 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 -0.1 -3.0 0.0 -0.1 -0.2 -0.2 0.0 -0.1 
Kurtosis 3.0 3.0 3.0 3.4 3.0 3.4 3.0 3.1 3.1 476 3.1 3.4 8.2 3.7 4.5 7.0 

Propensity score misspecified 
Without trimming 

RelRMSE 45 5 29 21 10 74 18 28 26 192 16 10 9 51 16 22 
Bias 3.0 0.9 2.8 2.4 1.4 2.9 2.3 2.4 71 27 76 65 52 68 75 66 
Std. dev. 4.3 3.9 3.5 3.6 3.8 5.6 3.6 4.0 109 314 84 88 98 141 88 107 
Skew. 0.1 0.0 0.0 0.0 0.1 0.1 0.1 0.1 -0.4 -1.7 0.0 -0.1 -0.6 -0.2 -0.2 -0.1 
Kurtosis 3.3 3.0 3.0 3.1 3.0 2.9 3.0 3.1 5.4 721 3.1 3.2 14.7 3.1 7.2 5.9 

Trimming level 6% 
RelRMSE 31 97 33 25 8 67 14 18 13 73 15 9 3 43 10 13 
Bias 2.8 3.3 3.0 2.5 1.5 2.7 2.2 2.2 68 64 75 64 53 65 71 63 
Std. dev. 3.7 6.3 3.6 3.7 3.7 5.4 3.5 3.7 92 168 86 89 90 134 83 97 
Skew. 0.0 0.2 0.0 0.0 0.1 0.1 0.0 0.1 -0.1 -1.1 0.0 -0.1 -0.5 -0.2 -0.1 -0.1 
Kurtosis 3.0 4.8 3.0 3.1 3.0 2.9 3.0 3.0 3.1 12 3.1 3.2 13.9 3.2 4.7 6.2 

Trimming level 4% 
RelRMSE 27 B 31 23 7 62 13 15 9 83 13 7 B 39 8 9 
Bias 2.7 0.8 2.9 2.4 1.5 2.6 2.1 2.1 66 25 73 62 53 63 70 62 
Std. dev. 3.6 3.7 3.6 3.6 3.7 5.3 3.5 3.6 88 194 85 87 87 129 81 93 
Skew. 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 -1.9 0.0 -0.1 -0.5 -0.2 -0.1 -0.1 
Kurtosis 3.0 3.0 3.0 3.1 3.0 2.9 3.0 3.0 3.1 524 3.1 3.2 13.5 3.2 4.6 5.5 
Note:  RelRMSE: Difference in relative root mean squared error in % compared to best estimator, marked as 'B'. Bias and 

standard deviation for employment are given in %-points. DR: Double robust (weighted) version of estimator. 

As already discussed, most of the gains originate from the DGPs with heavy selection 

and few controls. The gains are probably larger for the correctly specified model because the 
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propensity score of this model contains additional interaction terms that should lead to a 

‘better’ individual prediction. Since such a prediction is likely to increase the (unconditional) 

variance of the propensity score, it becomes more likely that the weights are above the thresh-

old.  

The upper part of Table 5.3 that relates to the correctly specified model sheds light on 

the potential threat that trimming might lead to a bias of the estimators. If anything, the (small 

sample) bias is reduced, but certainly not increased. Furthermore, the trimming level does not 

appear to have any relevant impact on the ordering of the respective estimators with the 

exception of IPT, which, in the binary outcome case, fairs better under no trimming than for 

6% trimming, but best for 4% trimming.  

Comparing the estimators to each other shows that most appear to lie within a reason-

able distance to the respective best estimator, with the exception of pair matching, which is 

never competitive in terms of the RMSE due to its large variance. Moreover, when the 

propensity score is misspecified, IPT does often worse than pair matching and again, its 

RMSE is not a monotonic function of trimming. For the case of a correctly specified model, 

probit and OLS appear to be the best estimators in terms of RMSE, while for the functionally 

misspecified propensity score, IPT (for employment) and the OLS regression adjusted radius 

matching (for earnings) are the best. 

Note that the distributional properties of the estimators are dependent on the outcome 

considered. For the binary employment outcome, the best performing IPT, logit adjusted ra-

dius matching and the probit estimators also have 'good' higher order moments. All the other 

estimators appear to have reasonable properties as well. For the semi-continuous earnings 

outcome, the results look strikingly different. Although the same classes of estimators (OLS 

adjusted radius matching and OLS) are preferred on RMSE grounds, they have fat tails de-

spite the trimming (but only in the small and medium sized samples as can be seen in Table 
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5.4). A particularly surprising feature is exhibited by IPT, which is among the best estimators 

for the binary outcome but performs strikingly bad for the continuous one. 

It is likely that this ranking based on averaging across DGP features and propensity 

score specifications is subject to some heterogeneity. To investigate this issue further, Tables 

5.4 and 5.5 present different subsets of the results. As 4%-trimming improves any method to 

some extent (even IPT) all results in these tables refer to the 4%-trimmed versions of the 

estimators only.  

Table 5.4 is concerned with variations in the sample size. Looking at the upper three 

blocks of the table, the average results for the employment outcome shown in Table 5.3 are 

confirmed. Note, however, that despite its good performance for the binary outcomes, IPT 

performs very badly for the earnings outcome in the small samples. Even for the medium 

sized sample its performance is very unsatisfactory if the propensity score is misspecified. For 

the large sample it appears however to be the best estimator for both outcome variables.45 Fur-

thermore, note that fat tails are also present for radius matching, and OLS, while the other 

estimators do not have this problem and are (apart from pair matching and IPT) very close in 

terms of the RMSE. For the largest sample these tail problems disappear and OLS-adjusted 

radius matching dominates all other estimators for earnings. 

It may seem surprising that IPW does not outperform the other estimators in the large 

sample despite the property that it is asymptotically efficient when the propensity score is 

non-parametrically estimated. The reasons for this could be that (i) the propensity score is 

parametrically estimated, or / and that (ii) the score is not re-estimated after trimming, which 

might lead to some improvement (but could also lead to new problems of very large weights). 

                                                      

45  Note that although this is true on average over all different DGPs considered for the large sample, the radius matching 
estimator with regression adjustment performs better for the correctly specified scores. 
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Note that changing the sample sizes in our comparisons goes along with changing 

other DGP features for the smaller sample sizes: for the smallest sample we only consider the 

case of 50% treated, while the larger samples also contain the more problematic DGP's with 

10% and 90% treated. Furthermore, note that because specifications with incorrectly specified 

propensity scores are also included, they are not expected to be unbiased. Therefore, to study 

the pure effect of the sample size in settings where the estimators are consistent, the lower 

three blocks of Table 5.4 only consider cases with 50% treated and a correct specification of 

the propensity score.  

Before comparing the relative performance of the estimators, a few general observa-

tions concerning all estimators are in order. Firstly, compared to the standard deviation the 

bias is small when the model is correctly specified. There are however important differences 

between the two outcomes: While the bias shrinks with sample size for the employment out-

come, this is not necessarily the case for the earnings outcome.  For example, the bias of IPT 

and OLS for earnings seems to be independent of the sample size, while the bias of IPT and 

the probit disappears for the employment outcome. The performance of OLS suggests that the 

linear model is not flexible enough and thus misspecified (leading to an asymptotic bias), 

while the probit seems to be a good approximation of the conditional expectation of the out-

come variable. A similar phenomenon occurs for the kernel estimators, but the level of the 

bias is smaller in this case.  Secondly, the standard deviations are approximately reduced by 

half when quadrupling the sample size. Again, this is more obvious for the binary outcome 

than for the semi-continuous outcome. It is also interesting to note that while the relative 

differences in the RMSE of the estimators are moderate in the smallest sample (of course with 

the exceptions already discussed), they become more pronounced when the sample size in-

creases. 
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Table 5.4: Comparison of the properties of the selected estimators: sample size 

 
Employment Earnings 

   
Kernel Matching Probit   

 
Kernel Matching OLS 

 
IPW IPT high low logit pair 

 
DR IPW IPT high low OLS pair 

 
DR 

N = 300 
RelRMSE 1 5 2 4 B 50 2 6 4 99 3 6 0.3 53 B 15 
Bias 1.3 1.8 1.3 1.4 0.9 1.1 2.0 2.0 36 27 33 34 27 30 42 31 
Std. dev. 6.2 6.5 6.4 6.4 6.4 9.5 6.2 6.5 148 299 148 152 148 226 140 167 
Skew. 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.0 -0.1 -22.7 0.0 -0.1 -0.3 -0.4 -0.1 -0.1 
Kurtosis 3.0 3.0 3.1 3.1 3.0 4.3 3.0 2.9 3.1 2910 3.1 3.2 7.5 4.6 3.7 15.9 

N = 1200 
RelRMSE 12 B 13 12 5 56 3 7 3 68 3 5 1 45 B 7 
Bias 1.5 0.7 1.7 1.7 1.1 1.3 1.3 1.3 36 24 44 45 30 32 46 33 
Std. dev. 4.4 4.3 4.4 4.4 4.5 6.5 4.2 4.3 106 192 102 105 108 160 98 112 
Skew. 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 -0.1 1.9 0.0 -0.1 -0.6 -0.2 -0.1 -0.2 
Kurtosis 3.0 3.0 3.0 3.2 3.0 2.9 3.0 3.0 3.1 194 3.1 3.5 19 3.3 6.3 5.9 

N = 4800 
RelRMSE 46 B 52 48 20 87 20 27 37 B 43 47 20 78 32 34 
Bias 1.5 0.3 2.0 1.8 1.2 1.5 1.1 1.1 36 21 51 48 32 35 47 35 
Std. dev. 2.3 2.1 2.2 2.2 2.2 3.4 2.0 2.3 58 49 51 58 51 85 47 59 
Skew. 0.0 0.0 0.0 -0.1 0.0 0.1 0.0 0.0 -0.1 0.0 0.0 -0.1 0.0 -0.2 0.0 -0.1 
Kurtosis 3.0 3.0 3.0 3.3 3.0 3.0 3.0 3.1 3.1 3.1 3.1 3.2 3.2 3.2 3.1 3.4 

N = 300 (correctly specified score; 50% treated) 
RelRMSE B 8 0.02 3 3 58 4 9 5 44 2 8 5 65 B 24 
Bias 0.3 2.0 0.4 0.6 1.0 0.1 1.7 1.7 9 21 8 9 13 3 22 3 
Std. dev. 6.5 6.8 6.5 6.7 6.6 10.3 6.5 6.8 153 208 149 157 153 240 143 180 
Skew. 0.1 0.0 0.0 0.1 0.1 0.1 0.0 0.0 -0.1 -27.6 0.0 0.0 -0.3 -0.4 0.0 0.1 
Kurtosis 3.0 2.9 3.1 3.1 3.1 5.7 2.9 2.8 3.1 3018 3.1 3.3 9.0 5.9 4.0 24.0 

N = 1200 (correctly specified score; 50% treated) 
RelRMSE 14 1 14 25 11 67 B 13 15 1 9 23 1 77 B 11 
Bias 0.2 0.2 0.3 0.8 0.7 0.2 0.2 0.1 5 18 7 15 5 1 18 5 
Std. dev. 3.3 2.9 3.3 3.5 3.1 4.8 2.9 3.3 81 67 76 85 71 125 66 78 
Skew. 0.1 0.1 0.0 0.3 0.1 0.2 0.1 0.1 -0.1 -0.1 0.0 0.1 0.0 -0.2 0.0 0.0 
Kurtosis 3.0 2.9 3.0 3.5 2.9 3.0 3.0 3.0 3.0 3.5 3.0 3.5 2.9 3.3 3.0 3.1 

N = 4800 (correctly specified score; 50% treated) 
RelRMSE 22 0.2 25 40 15 74 B 19 29 15 15 48 0.1* 87 17 28 
Bias 0.1 0.1 0.5 0.2 0.5 0.1 0.1 0.1 1 20 10 11 3 3 21 8 
Std. dev. 1.7 1.4 1.7 2.0 1.5 2.5 1.4 1.7 46 33 40 52 36 67 33 45 
Skew. 0.0 0.0 0.0 0.1 0.0 0.2 0.0 0.0 -0.1 0.0 0.0 0.1 0.0 -0.1 0.0 0.0 
Kurtosis 3.0 3.0 2.9 2.9 3.0 3.0 2.9 2.9 3.1 3.1 3.1 3.0 3.2 3.0 3.1 3.4 
Note:  RelRMSE: Difference in relative root mean squared error in % compared to best estimator. Bias and standard 

deviation for employment is given in %. All results based on relative trimming level of 4%. *The best estimator is 
this estimator with 6% trimming. 

With larger sample sizes (for the correct specification of the score and 50% treated) 

probit dominates for the employment outcome with IPT a close second while regression-ad-

justed radius matching is in third place with a RMSE that is 15% higher than the one of the 

probit. For the earnings outcome, this order is reversed for the largest sample size because the 

biases of OLS and IPT, which do not decrease with the sample size, are starting to dominate 
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the RMSE, while in the medium sample all three estimators perform similarly well (because 

OLS and IPT always have a larger bias but a smaller variance). In the smallest sample all 

three estimators are, as before, fat-tailed, but the tails of IPT are extreme (and it also has a 

large variance). Note that the double-robust version of OLS (and probit) does not have the 

bias problem, but is not precise enough to dominate the other estimators. It is worth mention-

ing that these results are somewhat contrary to the findings by Busso, DiNardo and McCrary 

(2009a, b) and Frölich (2004) which favour IPW and kernel matching, respectively. Although 

those estimators do not perform badly, they are nowhere near the top, with the exception of 

the smallest sample (see the further discussions of these differences below). 

The upper two blocks of Table 5.5 report the results using a correctly and an incor-

rectly specified propensity score. While for the correctly specified propensity score all estima-

tors appear to be close, except for pair matching, the parametric ones are the best.46 Note, 

however, the very fat tails of IPT for earnings. Under misspecification, IPT and regression-ad-

justed radius matching dominate in the binary and semi-continuous outcome case, respec-

tively, as these estimators have the smallest bias, which points to a desirable robustness prop-

erty. However, the variance of IPT is again comparably high (and tails very fat) such that it is 

not competitive in terms of the RMSE.47  

Next, different magnitudes of selection are evaluated. In the case of random selection 

all estimators are almost unbiased and perform well apart from pair matching and, when the 

                                                      

46  As the parametric models mirror the specification of the propensity score, the model with the correctly specified score 
implies that the parametric models contain these interaction term as well and are, thus, more flexibly specified than those 
with an incorrectly specified score. 

47  For completeness, a case of over-specification of the propensity score has been considered as well by additionally 
including squares of the seven continuous variables. For the medium and the large sample size the results are stable 
(standard errors increase slightly), while for the small sample the model is now clearly too flexible. The details are 
presented in Table E.2 in Internet Appendix E.3. 
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earnings outcome is considered, also apart from IPT. Surprisingly, the fat-tail problem ob-

served before is particularly acute for this most innocuous case, where the propensity score 

should play no role in the adjustment. A similar result, but now with some bias, is present for 

the 'normal' selection process. For cases with strong selection, it is again IPT and radius 

matching which dominate for employment and earnings, respectively, due to being least bi-

ased. In terms of RMSE, probit and OLS do not lack far behind as they are most precise. It is 

important to realize that when increasing the strength of selection from random to strong the 

support issue becomes more acute, which may then explain why the relative performance of 

some estimators deteriorates rapidly in the case of strong selection (which is then based on 

fewer observations), although the order of the relative performance of the estimators is not 

much affected by this. 

Finally, consider variation in the percentage of the treated. For the share of treated be-

ing just 10%, we observe that IPT dominates under both outcomes, which suggests that this 

estimator is particularly attractive when the number of available controls is large. As the share 

of controls increases, the attractiveness of IPT in terms of RMSE decreases drastically when 

considering the earnings outcome. When the treated share is 90% (incidentally this is also a 

case with more limited overlap of the finite sample support of the propensity score), radius 

matching has the smallest RSME under the earnings outcomes, while being a close second 

after IPT for the binary outcome case. Also note that the parametric methods are among the 

most competitive estimators independent of the share of treated. Furthermore, the results sug-

gest that the fat-tail problems observed for IPT, OLS and OLS adjusted radius matching are 

related to the lack of ‘enough’ control observations, as they are confined to the smaller sam-

ples in the scenario with 90% treated. For IPT, however, these problems occur even in cases 

with 50% treated. 
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Considering the results over all outcomes and DGPs, the following picture emerges in 

our view: IPT is attractive for the binary outcome but performs very poorly for the semi-

continuous outcome. IPW and kernel regression have a reasonable performance but are in 

many cases dominated by the parametric and the adjusted radius-matching. Comparing the 

latter two, it is obvious that the probit and OLS estimators are computationally much more in-

expensive than the matching methods (and their standard errors are easier to compute). 48 

Moreover, parametric models as well as IPW and IPT do not require the choice of tuning 

parameters. However, given that the parametric estimators are biased in the case of mis-

specification and this bias does not disappear with sample size, matching still is preferable. 

As mentioned before, our results are somewhat at odds with Frölich (2004) and Busso, 

DiNardo, and McCrary (2009a, b), as regression-adjusted radius matching, parametric regres-

sion, and for the binary outcome also IPT on average outperform any other method including 

kernel-ridge matching and IPW. The different findings may be due to the fact that the previ-

ous studies did not consider all classes and implementations of estimators considered in this 

paper, in particular not those with the best properties in terms of the RMSE.  

                                                      

48  With respect to computation time, OLS/probit, DR, and IPT are all very fast, while the kernel regressions and matching 
are considerably slower. The speed differences increase faster than the sample size. The exact amount of speed differences 
are very sensitive to how the various tuning parameters are chosen. 
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Table 5.5: Comparison of the properties of the selected estimators: other features 

 
Employment Earnings 

   
Kernel Matching Probit   

 
Kernel Matching OLS 

 
IPW IPT high low logit pair 

 
DR IPW IPT high low OLS pair 

 
DR 

Correctly specified propensity score 
RelRMSE 7 2 7 14 7 61 B 7 7 15 4 18 4 63 B 15 
Bias 0.2 0.6 0.7 1.0 0.7 0.1 0.5 0.5 6 21 19 27 8 3 22 5 
Std. dev. 3.9 3.7 3.9 3.9 3.9 5.9 3.6 3.9 94 97 88 96 92 145 84 101 
Skew. 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 -0.1 -3.0 0.0 -0.1 -0.2 -0.2 0.0 -0.1 
Kurtosis 3.0 3.0 3.0 3.4 3.0 3.4 3.0 3.1 3.1 476 3.1 3.4 8.2 3.7 4.5 7.0 

Misspecified propensity score 
RelRMSE 27 B 31 23 7 62 13 15 9 83 13 7 B 39 8 9 
Bias 2.7 0.8 2.9 2.4 1.5 2.6 2.1 2.1 66 25 73 62 53 63 70 62 
Std. dev. 3.6 3.7 3.6 3.6 3.7 5.3 3.5 3.6 88 194 85 87 87 129 81 93 
Skew. 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 -1.9 0.0 -0.1 -0.5 -0.2 -0.1 -0.1 
Kurtosis 3.0 3.0 3.0 3.1 3.0 2.9 3.0 3.0 3.1 524 3.1 3.2 13.5 3.2 4.6 5.5 

Selection: Normal 
RelRMSE 8 B 7 8 2 49 4 5 4 54 3 5 B 45 1 6 
Bias 1.3 0.6 1.6 1.4 0.9 1.2 1.2 1.2 31 15 43 37 26 28 39 31 
Std. dev. 3.5 3.6 3.4 3.5 3.6 5.1 3.5 3.5 88 143 82 87 87 129 82 90 
Skew. 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 -0.1 -9.7 0.0 -0.1 -0.6 -0.2 0.0 0.0 
Kurtosis 3.0 3.0 3.0 3.1 3.0 3.2 3.1 3.0 3.0 936 3.0 3.3 12.3 3.3 3.3 4.0 

Selection: Random 
RelRMSE 0.5 3 4 0.1* 7 48 2 2 0.5 31 3 0.1* 11 49 3 5 
Bias 0.0 0.4 0.1 0.1 0.4 0.1 0.3 0.2 1 1 2 2 4 2 1 1 
Std. dev. 3.1 3.1 3.2 3.1 3.2 4.5 3.1 3.1 70 92 72 70 78 104 72 74 
Skew. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -2.3 0.0 0.0 -0.3 -0.1 -0.2 -0.1 
Kurtosis 3.0 3.0 3.0 3.0 3.0 3.3 3.0 3.0 3.1 294 3.1 3.1 17.1 3.4 5.7 6.3 

Selection: Strong 
RelRMSE 37 B 40 39 12 81 12 22 17 66 19 25 B 57 10 21 
Bias 3.1 1.0 3.6 3.7 2.0 2.8 2.5 2.4 76 54 92 95 62 69 98 69 
Std. dev. 4.7 4.4 4.5 4.7 4.5 7.1 4.1 4.6 116 203 106 119 103 178 93 128 
Skew. 0.1 0.0 0.0 0.0 0.1 0.2 0.1 0.1 -0.2 4.6 0.0 -0.2 -0.1 -0.4 0.0 -0.2 
Kurtosis 3.0 3.0 3.0 3.6 3.0 3.0 3.0 3.1 3.2 272 3.1 3.6 3.2 3.8 4.6 8.5 

Share of treated: 10% 
RelRMSE 19 0.1* 30 19 18 66 8 14 14 0.2* 26 21 18 66 14 19 
Bias 1.1 0.2 1.7 1.3 1.0 1.1 0.8 0.8 24 14 39 36 27 24 38 27 
Std. dev. 3.4 3.2 3.5 3.4 3.5 4.9 3.2 3.3 83 77 87 84 85 126 77 85 
Skew. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 -0.1 0.0 0.0 
Kurtosis 3.0 3.0 3.0 3.0 2.9 3.0 3.0 3.0 3.0 3.1 3.0 3.0 3.0 3.0 3.1 3.1 

Share of treated: 50% 
RelRMSE 15 B 15 18 4 59 6 11 11 47 7 12 B 54 6 15 
Bias 1.3 0.7 1.3 1.4 1.0 1.3 1.3 1.3 33 21 33 35 26 30 43 31 
Std. dev. 3.7 3.6 3.7 3.8 3.6 5.4 3.5 3.7 90 133 88 92 84 134 80 96 
Skew. 0.0 0.0 0.1 0.1 0.1 0.1 0.0 0.1 -0.1 -7.6 0.0 0.0 -0.1 -0.2 0.0 0.0 
Kurtosis 3.0 3.0 3.0 3.1 3.0 3.4 3.0 2.9 3.1 972 3.1 3.2 4.5 3.6 3.3 7.5 

Share of treated: 90% 
RelRMSE 17 B 15 16 1 58 4 7 8 105 6 12 B 44 3 10 
Bias 2.1 1.1 2.5 2.7 1.4 1.8 1.9 1.8 52 36 72 67 39 46 58 43 
Std. dev. 4.4 4.3 3.9 4.1 4.2 6.5 4.0 4.2 102 234 84 99 102 152 92 111 
Skew. 0.0 -0.1 0.0 -0.2 0.0 0.2 0.0 0.0 -0.1 2.9 -0.1 -0.4 -1.0 -0.4 -0.1 -0.3 
Kurtosis 3.1 3.1 3.0 3.6 3.0 2.9 3.2 3.2 3.2 291 3.1 3.7 28.2 3.7 8.0 7.5 
Note:  RelRMSE: Difference in relative root mean squared error in % compared to best estimator. Bias and standard 

deviation for employment are given in %. All results based on relative trimming level of 4%. *The best estimator is 
this estimator without trimming.  
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However, the previous studies also differ in other respects that may drive the results, 

e.g. the nature of their (non-empirical) DGPs and the application of trimming rules. It is 

particularly worth noting that both Frölich (2004) and Busso, DiNardo and McCrary (2009a, 

b) consider much smaller sample sizes and less rich specifications than we do. It may well be 

that the relative performance of the estimators is reversed in very small samples. However, as 

samples with, for example, 100 observations appear to be inappropriate for a sound 

application of semi-parametric propensity score methods, and are therefore rarely found in 

empirical applications, we do not examine this case. 

6 Conclusion 

This paper investigates the finite sample properties of all major classes of propensity-

score-based estimators of the average treatment effect on the treated (ATET) that are used in 

applications. Moreover, within each class of estimators we investigate the performance of the 

estimators for a variety of possible versions and various values of the tuning parameters. Both 

features make this study the most comprehensive one in the field so far. 

We propose a way to overcome one of the main criticisms of Monte Carlo simulations, 

namely that of unrealistic, artificially and arbitrarily chosen DGPs. The key feature of our 

approach is that we base the simulations on real data, and hence real selection problems and 

dependencies between treatment and outcomes, but still know the true value of the parameter 

of interest. Moreover, to improve the external validity of our results that, strictly speaking, 

apply only to labour market evaluations, we vary several features of the DGP’s such as the 

sample size, the magnitude of selection into the treatment, the share of treated observations, 

and the outcome. As a further contribution, we consider a simple trimming rule not 

investigated before that is based on identifying control observations whose relative weights 
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are larger than a particular threshold rather than imposing a fixed threshold value of the 

propensity score. This rule does not entail asymptotic bias.  

Our results suggest that when averaging over all DGPs, trimming observations with a 

weight larger than 4% reduces the root-mean-squared-error (RMSE) of all estimators substan-

tially. Among the best trimmed estimators of each class, we find that overall bias-adjusted 

radius matching, parametric regression (probit for the binary and OLS for the semi-continuous 

outcome), and - for the binary outcome case only - inverse probability tilting (IPT) perform 

best with respect to the RMSE. However, the parametric estimators may be subject to 

substantial bias that dominates the RMSE in larger samples than considered in this paper, 

while radius matching and IPT may be subject to fat-tail behaviour when there are too few 

control observations. 

Bias-adjusted radius matching and, for binary outcomes only, IPT also appear to be 

the most robust methods when the propensity score is functionally misspecified. Yet, all other 

estimators (which are among the best within their class of estimators) are within a reasonable 

distance in terms of the RMSE.  

Having understood the performance of the available estimators for covariate adjust-

ment in an (almost) real application situation, future research targeted at identifying appropri-

ate estimators in practice might also address the question of finding reliable inference proce-

dures for these estimators. Furthermore, an Empirical Monte Carlo study has also the 

important limitation that it may not necessarily be valid in a different environment (although 

the advantage is that it is valid in at least one relevant environment). We leave it for future re-

search to better understand the general external validity of the results presented in this paper. 

Future research might also investigate other dimensions of the methods important to empirical 

work, for example how to determine the common support or how to choose the particular 
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specification of the propensity score. Finally, the surprising behaviour of IPT in the case of 

the semi-continuous outcome is worth further investigation.  
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Appendix A: More details on the estimators 

Appendix A.1: Matching 

Table A.1 describes the baseline matching protocol of all direct matching estimators. 

Table A.1: Matching protocol for the estimation of a counterfactual outcome and the effects 

Step A-1 Choose one observation in the subsample defined by d=1 and delete it from that pool. 
Step B-1 Find an observation in the subsample defined by d=0 that is as close as possible to the one chosen in step A-

1) in terms of ( ),p x x%. 'Closeness' is based on the Mahalanobis distance.  
Step C-1 Repeat A-1) and B-1) until no observation with d=1 is left. 
Step D-1 Compute the maximum distance (dist) obtained for any comparison between a member of the reference 

distribution and matched comparison observations. 
Step A-2 Repeat A-1). 
Step B-2 Repeat B-1). If possible, find other observations in the subsample of d=0 that are at least as close as R * dist 

to the one chosen in step A-2). Do not remove these observations, so that they can be used again. Compute 
weights for all chosen comparisons observations that are proportional to their distance. Normalise the 
weights such that they add to one. 

Step C-2 Repeat A-2) and B-2) until no participant in d=1 is left. 
Step D-2 D-2) For any potential comparison observation, add the weights obtained in A-2) and B-2). 
Step E Using the weights  obtained in D-2), run a weighted linear regression of the outcome variable on the 

variables used to define the distance (and an intercept). 
Step F-1 Predict the potential outcome 

0 ( )iy x  of every observation using the coefficients of this regression: 
0ˆ ( )iy x . 

Step F-2 

Estimate the bias of the matching estimator for 
0( | 1)E Y D =  as: 

0 0

1 0 1

ˆ ˆ(1 ) ( ) ( )N
i i i i i

i

d w y x d y x
N N=

−
−∑

. 
Step G Using the weights obtained by weighted matching in D-2), compute a weighted mean of the outcome vari-

ables in d=0. Add the bias to this estimate to get 
·0( | 1)E Y D = . 

Note: In the Monte Carlo study R is set to 50%, 150%, and 300%. 

Appendix A.2: Kernel-ridge regression matching 

Let ( )m ρ  denote [ | 0, ( ) ]E Y D p X ρ= = , the mean outcome in the control population 

conditional on the propensity score. The kernel matching estimator of the ATET is defined as 

[ ]ker
11

1ˆ ˆ ˆ( ( ))
N

nel i i i
i

d y m p x
N

θ
=

= ⋅ −∑ , 

where ˆ ˆ( ( ))im p x  is the estimated conditional mean outcome among controls given the esti-

mated propensity score ˆ ( )ip x . The Seifert and Gasser (1996, 2000) ridge kernel regression 

estimator for the counterfactual outcome evaluated at ˆ ( )ip xρ =  is 

( )iw x
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and  

: 0 : 0

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
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j j

N N
j i j i

i j
j d j d

p x p x p x p x
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h h= =

− −   
= ⋅    

   
∑ ∑  

( )K ⋅ denotes the kernel function and h  the bandwidth operator that goes to zero as the sample 

size increases. r is the ridge term ensuring non-zero denominators that should be set to 0.3125 

for the Epanechnikov kernel, which we use in the simulations, according to the rule of thumb 

of Seifert and Gasser (2000). That is, the ridge term is proportional to the bandwidth in finite 

samples given that the bandwidth is not too large (which is a case not considered by Seifert 

and Gasser, 2000). It should be zero if either the sample size or the bandwidth approaches 

infinity.49  

Concerning the choice of h , we use both the rule of thumb, see Silverman (1986), as 

well as least squares cross validation, see for instance Hall, Racine, and Li (2004). For the 

                                                      

49  We thank Markus Frölich for a fruitful discussion on this topic. If the bandwidth goes to zero with an increasing sample 
size, as it does in Seifert and Gasser (2000), the ridge term vanishes naturally. However, it should also go to zero for a 
bandwidth going to infinity, otherwise one would incorrectly estimate a global constant instead of a global linear model. 
Therefore, the ridge term should only be proportional to the bandwidth if the latter is not 'very large' and should be set to 
zero otherwise. Furthermore, we thank Markus Frölich for providing us with the GAUSS code of the estimator as well as 
the cross validation procedure. 
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Epanechnikov kernel, the rule of thumb suggests setting the bandwidth to 1 5
02.34 Nσ −⋅ ⋅ , 

where n  is the sample size among the non-treated and σ  is the minimum of the standard 

deviation and the interquartile range divided by 1.349. The cross-validation bandwidth is 

chosen by  

2

: 0

ˆarg min [ ( )] ,
i

CV
h i i i

i d
h Y m p−

=

= −∑  

where ˆ ( )im ρ−  is the estimate of the conditional mean at propensity score ρ  with observation 

i  removed from the sample. This procedure chooses the bandwidth such that the expected 

value of the squared difference between the estimated and true regression function is mini-

mized, where the expectation is taken with respect to the propensity score distribution among 

the controls. The bandwidth is (asymptotically) optimal for the estimation of the regression 

function ˆ ( )m ⋅ , but not necessarily for the kernel matching estimator of the ATET; see also the 

discussion in Frölich (2005) and Imbens and Wooldridge (2009). Therefore, we consider  

3 CVh⋅  and 3
CVh  as additional bandwidths. Against the theoretical intuition which suggests 

that undersmoothing should dominate, it is the largest bandwidth 3 CVh⋅  that works best on 

average in our simulations. As a final remark, note that we only consider global bandwidth 

choices as this is standard in empirical applications. Future work might investigate the useful-

ness of local bandwidth selection and/or weighted cross validation (where the weights refer to 

the mass of treated observations given a particular propensity score); see, for instance, Galdo, 

Smith, and Black (2008), which, however, increases computational burden.  
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