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Abstract 

The issue of potentially endogenous control variables in causal studies based on the assump-

tion of no selection bias conditional on observables (CIA) is discussed. The paper shows that 

the standard formulation of the CIA obscures the endogeneity problem. It suggests a CIA 

based on potential variables together with explicit exogeneity conditions which allows a sepa-

rate assessment of the endogeneity bias and the plausibility of the CIA.  
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1 Introduction 

An example of causal studies is the rapidly growing literature on the evaluation of labour 

market programmes (see for example the surveys by Heckman, LaLonde, and Smith, 1999). 

Many evaluation studies of labour market programmes take account of selection effects into 

the programme by collecting large and informative data with many (control) variables that 

help to explain participation in the programmes as well as outcome variables of interest. Then, 

they proceed with matching methods (see as examples Sianesi, 2004, and Gerfin and Lechner, 

2002, among many others) to estimate the effects of the programmes on the specific sub-

groups of participants and nonparticipants. If conditional on the rich control variables, the 

participation and the outcome variables are independent, the so-called selection on observ-

ables, or conditional independence assumption (CIA) holds. Then, a major condition for the 

consistency of matching estimators is fulfilled (see the survey by Imbens, 2004, for estimation 

methods). 

However, sometimes, the researcher may not be sure whether the control variables are influ-

enced by the treatment. An example is an unclear timing of the control variables, so that some 

of them may be actually measured after the treatment. Or they are measured prior to the 

treatment, but the future treatment start is already known and behaviour changes because of 

this knowledge. Although there is some notion in the literature that conditioning variables 

should not be influenced by programme participation (not to be confused with the fact that 

they may be correlated with programme participation), which is spelled out for example in 

Frangakis and Rubin (2002), Heckman, LaLonde, and Smith (1999), Rosenbaum (1984) and 

Rubin (2004), a clear definition applicable to this case is missing. Strangely, an answer to a 
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simple question like “Does endogeneity of the control variables matter if the CIA holds?” 

appears to be missing as well.1 

This note provides an answer to that question ('it does not matter') and defines the exogeneity 

conditions required for identification. The main thrust of the paper is that the conditional 

independence assumption based on observable control variables is sometimes a misleading 

vehicle for discussing identification of causal effects in a framework based on potential out-

comes. Therefore, I suggest a reformulation of the conditional independence assumption to-

gether with explicit exogeneity conditions that formally separates the discussion of selection 

bias coming from a set of control variables that is not rich enough, from the discussion about 

their potential endogeneity.  

The paper is organised as follows: The next section introduces the notation of the causal 

model based on potential outcomes and defines the parameters of interest. Section 3 considers 

the endogeneity problem in the standard formulation of the conditional independence as-

sumption (CIA). Sections 4 and 5 reformulate the standard CIA in terms of potential control 

variables and characterise the bias as well as the exogeneity assumptions required to avoid it. 

2 The prototypical binary treatment model 

The binary causal model of potential outcomes is currently the workhorse in applied causal 

analysis. It has its roots in the literature about experimental evaluations in agriculture starting 

                                          
1  Since in econometrics endogeneity is usually a key issue, it is somewhat surprising that it has not 

received much general attention in the field of evaluation studies. The papers in this field 
concentrate fully on the endogeneity problems coming from missing variables that determine the 
selection process.  

 Note that we use the term endogeneity (and exogeneity) somewhat casually to mean that the 
variable is (not) influenced by the treatment, which is not exactly in line with the common use of 
this language in econometrics (e.g. Engle, Hendry, and Richard, 1983). Alternatively, the 
exogeneity conditions below may also be termed 'non-causality conditions', although there are 
different uses for this word as well. 
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with Neyman (1923).2 The model is characterised by random variables describing two poten-

tial states of the world, also called treatments and denoted by { }0,1S ∈  (e.g. participation or 

nonparticipation in the programme), the corresponding outcome that would occur if one of the 

states is realised ( 1Y , 0Y ) (e.g. employment status that would occur in case of participation 

and nonparticipation), and the observed outcome variables Y .3 Observed and potential out-

come variables are related by the observation rule, 1 0(1 )Y SY S Y= + − .  

Denote characteristics that influence treatment participation as well as potential outcomes as 

X (called control variables in econometrics, or confounders in the statistics literature). To ad-

dress the issue of endogeneity we treat confounders and outcomes in a symmetric way and 

define random variables for their potential values ( 1X , 0X ), as well as an observation rule 

1 0(1 )X SX S X= + − . As usual, we are interested in estimating the average treatment effect on 

the treated (ATET) 10 1 0(1) : ( | 1) ( | 1)E Y S E Y Sθ = = − = , the average treatment effect on the 

nontreated (ATENT) 10 1 0(0) : ( | 0) ( | 0)E Y S E Y Sθ = = − =  and the average treatment effect 

(ATE) 10 ( ) :θ ⋅ =  1 0( ) ( )E Y E Y− . Note that 10 10 10( ) (1) P( 1) (0)[1 ( 1)]S P Sθ θ θ⋅ = = + − = . 

( 1)P S =  denotes the probability of participation. To complete the model, we follow Rubin 

(1980) and impose the stable unit treatment value assumption (SUTVA). SUTVA implies that 

treatments on the individual level are well defined and complete and that there is no interfer-

ence between treated and controls (e.g. no general equilibrium effects for a labour market 

training programme), and leads to the observation rule. Furthermore, assume that for all 

values of the observed confounding variables that are of interest ( x χ∈ ), there is some 

chance to end up in either of the two states, i.e. 0 ( 1| ) 1P S X x< = = <  (common support).  

                                          
2  In the following we use the terms common in that literature. 
3  We use the binary model for pedagogical reasons only. The extension to a model with multiple 

treatments along the lines of Imbens (2000) and Lechner (2001, 2002) is straightforward. 
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With respect to the data available, assume that there is a random sample of the observable 

variables { } 1:
, ,i i i i N

y s x
=

, that is large enough so that studying identification in the population 

instead of the sample is reasonable. Nevertheless, 1( | 0)E Y S = , 0( | 1)E Y S = , 1( )E Y , and 

0( )E Y , are not identified without further assumptions. 

3 Is there an endogeneity problem when the conditional independence as-

sumption holds? 

Assume that ‘the data are informative enough, so that controlling for observed variables is 

sufficient to remove any selection bias’ (Rubin, 1974, 1977, 1979). This is the so-called con-

ditional independence (CIA) or selection on observables assumption. It is formalised as: 

1 0, | ,Y Y S X x x χ= ∀ ∈ .                                                                                    (CIA-O) 

 denotes conditional independence as in Dawid (1979). CIA-O implies 

( | 1 , )sF Y S s X x= − =  = ( | , )sF Y S s X x= = , {0,1}s∈ . It suffices to identify the treatment 

effects because ( | 1 )sE Y S s= − = 
| 1

( | 1 , )s

X S s
E E Y S s X x
= −

= − = = 
| 1

( | , )s

X S s
E E Y S s X x
= −

= = = 

| 1
( | , )

X S s
E E Y S s X x
= −

= = .  

Other than some standard regularity assumptions about the existence of moments, no further 

assumptions, in particular, no assumptions about the exogeneity of the control variables are 

required. Therefore, the question arises what happens if some of the control variables are 

influenced by the treatment (i.e. 1 0X X≠ ). At this level, the answer is that it does not matter 

at all, as long as (CIA-O) is satisfied. This seems to be odd at first glance, because it is a well 

known fact that endogenous control variables may lead to tremendous biases of the resulting 
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estimators. For example, suppose the chosen estimator is a pair matching estimator4 and the 

observed outcome variable is included among the control variable, then matched pairs have 

the same value of the outcome variable and the estimator will always give zero as estimated 

treatment effect, whatever the true effect may be. Of course, this example is extreme since 

nobody would actually use outcomes as control variables. However, there are many cases in 

practice in which there is at least a reasonable suspicion that some of the control variables 

may actually be a function of the outcome variables. In those cases, qualitatively similar 

biases may occur. 

To resolve this puzzle, note that with an endogenous variable included among the control 

variables, the untestable assumption CIA may become hard to defend on a priori grounds. 

Using the observation rule for the confounders, we see the reason: CIA implies 

1( | 1 , )s sF Y S s X x−= − =  = ( | , )s sF Y S s X x= = . In this case the randomization interpreta-

tion of CIA ('if we observe all variables jointly influencing the outcomes and selection, then, 

conditional on the same value of these variables, selection is random') does not hold any 

longer, because the comparison relates to the same value, but for different control variables. 

Since we cannot observe 1X  for nonparticipants and vice versa, we must condition on the ob-

served X. However, conditioning on the observed X implies conditioning on 1X  for the 

participants, and conditioning on 0X  for the nonparticipants. This could become a very seri-

ous problem when 1X  and 0X  differ.  

To conclude, endogeneity of the control variables does not play any role once the CIA is as-

sumed, but it makes the CIA unlikely to hold. Thus, the endogeneity problem is obscured 

when stipulating the CIA in the usual way as in CIA-O.5 

                                          
4  See Imbens (2004) for an extensive survey of relevant estimation methods. 
5  Simonsen and Skipper (2004) are concerned with endogeneity problems in matching studies as 

well. However, they assume that CIA is based on exogenous variables only. The thrust of their 
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4 The explicit treatment of endogeneity  

This section discusses potential biases due to endogeneity of the control variables (i.e. they 

are influenced by the treatment) and gives conditions under which no such biases occur. Such 

variables may contain valuable information about the selection process as considered in 

Rosenbaum (1984), they may be in the 'causal pathway' of the treatment, as in Rubin (2005), 

or they may be intermediate outcomes of a dynamic treatment not yet completed (Lechner and 

Miquel, 2005).  

First, I restate the conditional independence assumption conditioning on variables that are by 

definition exogenous, namely the potential confounders:6 

1 0, | , {0,1},sY Y S X x s x χ= ∈ ∀ ∈ .                                                              (CIA-P) 

CIA-P implies ( | 1 , )s sF Y S s X x= − =  = ( | , )s sF Y S s X x= = . Since this condition is a con-

trast for the same conditioning variables, the requirement is that if all variables influencing 

outcomes ( 1 0,Y Y ) and selection (D) are included in sX , CIA-P must hold. Note that 

conditioning on 1X  or 0X  is sufficient, whichever appears to be more plausible in the 

intended application.  

CIA-P has the virtue of using conditioning variables that are by definition exogenous. How-

ever, it does not allow identification of the effects, because there is only data on sX  for those 

observations participating in state S=s. Thus, additional assumptions are required linking the 

potential X to the observed X. For the strongest of such assumptions, i.e. that S has no influ-

                                                                                                                                  
paper seems to be to uncover effect heterogeneity driven by endogenous variables as well as 
uncovering the effect of the endogenous variables together with S on the outcomes, which is a 
different issue than the topic discussed here. 

6  Note that potential confounders are in principle the same type of variables as potential outcomes. 
However, the difference is that we are not interested in the direct effect of the treatment on potential 
confounders. 
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ence on X, 1 0X X X= = , CIA-P and CIA-O are identical.7 In fact, they amount to what 

Rosenbaum and Rubin (1983) call the assumption of strongly ignorable treatment assign-

ment. 

4.1 Bias 

Next, consider the potential asymptotic bias of a matching estimator due to the endogeneity of 

the control variables for the counterfactuals ( | 1 )sE Y S s= − . This bias can be characterised 

by using the observation rule for outcomes and control variables together with CIA-P. The 

characterisation depends on whether the potential outcome and potential confounders used in 

CIA-P relate to the same or a different potential state. For the same state, we obtain: 

1

1

1

| 1 | 1 | 1

| 1 | 1

| 1 | 1

( | 1 ) ( | , ) ( | 1 , ) ( | , )

( | , ) ( | , )

( | , ) ( | , ).

s s

s s

s s

s s s

X S s X S s X S s

Bias
s

X S s X S s

X S s X S s

E Y S s E E Y S s X x E E Y S s X x E E Y S s X x

E E Y S s X x E E Y S s X x

E E Y S s X x E E Y S s X x

−

−

−

= − = − = −

= − = −

= − = −

= − − = = = = − = − = =

= = = − = =

= = = − = =

 

The bias arises because 1X  and 0X  may have different distributions in the population of 

interest (1-s). If 1 0( | 1 ) ( | 1 )F X S s F X S s= − = = −  [ ( | 1 )]F X S s= = − , the bias is zero. This 

is an exogeneity condition, because it stipulates that the distribution of the controls is not 

affected by the treatment in a specific subpopulation. For example, if interest is in ATET 

( 10 (1)θ ) and conditioning is on 0X , then this is all that is needed for identification. 

When the potential confounder related to the alternative state, then we can rewrite the bias 

differently, such that a second interpretation becomes obvious: 

                                          
7  See for example Assumption A6 in Heckman and Vytlacil (2005). 
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1

1

1

| 1 | 1| 1

1

| 1| 1

1

| 1

( | 1 ) ( | , ) ( | 1 , ) ( | , )

( | , ) ( | , )

[ ( | , ) ( | , )].

s

s

s s s

X S s X S sX S s

s

X S sX S s

s

X S s

E Y S s E E Y S s X x E E Y S s X x E E Y S s X x

E E Y S s X x E E Y S s X x

E E Y S s X x E Y S s X x

−

−

−

= − = −= −

−

= −= −

−

= −

= − − = = = = − = − = =

= = = − = =

= = = − = =

. 

The bias arises because we should evaluate the first conditional expectation of Y as a function 

of the counterfactual conditioning variable ( 1 sX − ), instead of the observed one ( sX ). Thus, if 

both expectations coincide, i.e. 1( | , ) ( | , )s sE Y S s X x E Y S s X x−= = = = = , then no bias 

arises. This is again an exogeneity condition in a specific subpopulation, although weaker 

than the previous one. It stipulates that the X may be influenced by the treatment, but these 

influences should not matter for the outcomes. 

4.2 Identification under explicit exogeneity conditions 

The previous considerations suggest explicitly introducing two exogeneity conditions for X: 

1( | 1 ) ( | 1 )s sF X S s F X S s−= − = = − ;                                                                                 (E.1) 

1( | , ) ( | , )s sE Y S s X x E Y S s X x−= = = = = .                                                                       (E.2) 

If interest is in 1 , (1 )s s sθ − − , then CIA-P (for sY  only) conditioning on sX  in combination 

with E.1, or CIA-P (for sY  only) conditioning on 1 sX −  in combination with E.2, is sufficient.8 

If interest is in the average treatment effect, 1 , ( )s sθ − ⋅ , then CIA-P conditioning on sX  or 1 sX −  

in combination with E.1 and E.2, or CIA-P conditioning on sX  and CIA-P conditioning on 

1 sX −  in combination with either E.1 or E.2 are sufficient. The proofs follow directly from the 

expressions of the biases given above. If the treatment does not influence the control variables 

at all ( 1 0X X= ), E.1 and E.2 hold trivially anyway. Note that together with the two 

                                          
8  By an obvious change of indices, a similar result is obtained for 1 , ( )s s sθ − . 
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exogeneity conditions, CIA-P implies CIA-O, and vice versa. However, without those 

exogeneity conditions, neither implies the other. 

It is interesting to compare the exogeneity conditions suggested above to conditions already 

considered by Heckman, LaLonde, and Smith (1999). They require 1 0( | , , )F X Y Y S s=  = 

1 0( | , )F X Y Y , which implies 1 0( | , , )sF X Y Y S s=  = 1 1 0( | , , 1 )sF X Y Y S s− = − . Although this 

condition is similar to E.1 and E.2, the two equations characterising the bias presented in 

section 4.1 show that this does not solve the problem. When used together with CIA based on 

observables (which is of course unnecessary for identification), it has however intuitive 

appeal, because it rules out some dependence of the observed X on S.  

The early paper by Rosenbaum (1984) considers a formal framework in which the endogene-

ity comes from some variables affected by the treatment that are, however, not necessary as 

control variables for the CIA. Thus, his question is about the potential damage when such 

variables are included in the conditioning set. His sufficient conditions for no selection bias 

imposes 1 0X X= . Thus, it seems to be stronger than necessary.9 

The idea to condition on potential confounders is similar to an idea recently advanced in pa-

pers by Frangakis and Rubin (2002) and Rubin (2004). The aim of these authors is to arrive at 

valid results for the effects based on matching estimation despite the endogeneity problem of 

the controls. They define what they call principle strata of the data. These strata are defined 

by the values of the potential confounding variables. They ‘solve’ the problem that such strata 

are inherently unobservable by, firstly, imputing the values for the potentially endogenous 

control variables. Then, they use the estimated values of the potential control variables as 

control variables in the final estimation. This method that shows some similarity to ideas 

underlying the old parametric two stage least squares estimator in econometrics is 
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computationally and conceptionally attractive, but it hinges on additional strong assumptions, 

which pose a new identification problem that may be as difficult to solve - convincingly - as 

the original one. 

5 Conclusion 

This paper showed that the fact that some control variables may be influenced by the treat-

ment does not matter as long as the usual formulation of the conditional independence as-

sumption holds. In other words, the usual formulation of the CIA obscures this endogeneity 

problem. Therefore, an alternative formulation of the conditional independence assumption 

together with explicit exogeneity conditions is proposed. The new conditions allow separating 

the discussion of eliminating selection bias by conditioning on the necessary control variables 

from the discussion about their potential endogeneity with respect to outcome and selection 

variables. Thus, these conditions should provide useful and in fact better guidance for applied 

work, in particular for the assessment of the plausibility of the untestable assumptions that are 

always required for the identification of causal effects. 
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