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Abstract 
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1 Introduction* 

One of econometricians' most important tasks of is to uncover causal relations between economic 

variables and distinguish them from associational relationships, also called spurious correlations. 

Only causal relations are useful for policy advice, because they contain the reaction of the 

economic variables of interest to policy interventions. Following classical economic theorists, 

like Marshall, or, more recently but in the same spirit, Hicks (1979), it is the effect of the ceteris 

paribus intervention that is of interest.  

In the research programme of the Cowles commission,1 it was already clear that their 

interpretation of causality does imply such 'counterfactual' variations embedded in the system of 

simultaneous equations that was the workhorse of those days. Apparently, to have the power to 

analyze counterfactual situations (e.g. a world with and without a particular policy), untestable, 

'identifying' assumptions have to be invoked. After the research programme of the Cowles 

commission at least partly failed, one of the reactions of econometricians to that failure was to 

lessen the restrictions that were implied by the structure of the linear simultaneous equations 

model (Heckman, 2000, gives an excellent account of these developments). In time series 

econometrics, a more prediction-based approach to causality was developed that was largely 

attributed to Granger (1969) and Sims (1972). We will call this approach Granger-Sims causality 

below. In microeconometrics, the so-called potential outcome approach was 'imported' from 
                                                           
* I am affiliated with ZEW, Mannheim, CEPR and PSI, London, IAB, Nuremberg, and IZA, Bonn. I am thankful to 

Jim Heckman for convincing me to write down some of the issues that appear in this paper. Furthermore, I am 

grateful to James Robins, the editor of this Journal, Esfandiar Maasoumi, and an anonymous referee for very 

helpful comments on earlier versions of this paper. I thank Stefan Wiehler for careful proofreading. Of course, the 

usual disclaimer applies. I very much appreciate the previous joint work on dynamic potential outcome models 

with Ruth Miquel, in which we touched on a couple of issues that reappear here. The first version of the paper has 

been written while I was visiting the Economics Department of the University of Michigan. The hospitality is 

appreciated. 
1  For an overview of the work by the Cowles commission, see for example Christ (1994). 
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statistics (biometrics) and adapted to its needs. Its formalization is frequently attributed to Rubin 

(1974). However, there are important aspects and differences between these approaches that are 

not yet fully understood. This is partly so, because time-series concepts are obviously dynamic in 

nature, whereas for a long time the work of microeconometricians have naturally been based on a 

static framework.  

To be more precise, the concept used in time series econometrics is based on work of Wiener 

(1956), Granger (1969), and Sims (1972) (e.g. see the review article by Geweke, 1984). Their 

basic idea is that (non-) causality is very similar to, if not the same as, (non-) predictability. 

Therefore, they consider one variable not to cause another variable if the current value of the 

causing variable does not help predict future values of that variable. This statement is conditional 

on the information set available at each point in time. This concept is, in principle (technically), 

applicable if one cross-sectional unit (e.g. a country) is observed for a sufficiently long time.2 

The alternative concept popular in microeconometrics, particularly and most explicitly in the 

programme evaluation literature (e.g., Heckman, LaLonde, and Smith, 1999) is based on the idea 

that the relevant comparison is between different states of the world, each of which relates to a 

value of the causing variable. In the absence of a causal relationship, the realised outcomes would 

be the same even if those potential states of the world were true. To relate this concept of 

different states of the world to data, it is necessary to observe different sample units in different 

states. Then, so-called identifying assumptions are employed to relate the observed data to the 

distribution of the potential outcome variables, so that causal effects can be inferred from the 'real 

                                                           
2  Note that we do not attempt to analyse the relation of the approach of the Cowles commission concerning 

causality (see for example Haavelmo, 1943, or Simon, 1953, 1954) to the subsequent developments in 

econometrics, as this has already been done, for example, by Cooley and LeRoy (1985) for macroeconometrics, 

and by Heckman (2000) for microeconometrics. Heckman (2000) contains also an excellent account of the 

relation of causality to ceteris paribus intervention as was seen by the very early economic theorists. 
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world' that is reflected in the data. The statistical formulation of the resulting inference problem 

was probably due to Neyman (1923) and was extended and popularized by Rubin (1974). Robins 

(1986) first suggested dynamic versions of the potential outcome approach. In principle, for this 

approach to be technically applicable, there is no need to use time series variation in the data as 

long as there is enough cross-sectional variation. 

Apparently, there is nothing specific to these concepts such that they may only be applied in 

micro- or time series econometrics. They are based on different general principles that may be 

applied to all types of data. For example, Adams, Hurd, McFadden, Merrill, and Ribeiro (2003) 

use the predictive approach to analyze micro data, whereas Angrist and Kuersteiner (2005a, b) 

apply the potential outcome approach in a time series context. In particular, when the data have a 

time dimension as well as a cross-sectional dimension, both approaches may be applicable. In 

this case, the dynamic approach to potential outcomes provides a useful framework to compare 

both concepts on an equal footing. It addresses not only heterogeneity issues that are a key 

concern in microeconometrics, but also dynamics that is a common feature of time series 

econometrics. 

Explicit comparisons of these two concepts of causality are limited. Heckman (2000) in his 

historical account of causality in econometrics does not attempt a formal comparison of these 

causality concepts. Holland (1986), in his overview of causality in different fields, briefly 

analyses Granger causality in a static model of potential outcomes and shows an equivalence of 

the two concepts under a randomisation condition. The exchange between Granger (1986) and 

Holland (1986), which was part of the discussion of the Holland (1986) paper, does not really 

clarify the distinguishing features either. Robins, Greenland, and Hu (1999) (informally) note the 

relationship of predictive non-causality to non-causality based on dynamic potential outcome 

models. This relation is also noted and discussed by Angrist and Kuersteiner (2005a, b) who de-
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velop formal test procedures for non-causality in a time series context that are motivated by the 

potential outcome approach. In an attempt to broaden the understanding of the causal concepts 

that underlie the predictive concept of causality, Robins (2003) formally relates Granger non-

causality to the concept of the faithfulness analysis of causation by Spirtes, Glymour, and 

Scheines (1993).3 White (2006) addresses the related topic of estimating the effects of single 

interventions with time series data.4 

This paper formally analyzes the relation between the two concepts, so that their differences are 

clearly explicable. In doing so, we use the nonparametric dynamic model of potential outcomes 

to analyse the differences between predictive (Granger-Sims) non-causality and non-causality 

defined by potential outcomes. We find that, in general, neither of the concepts implies the other 

without further assumptions (of course, this feature of Granger-Sims causality has already been 

previously observed in the comparisons of it to causality as defined by the Cowles commission; 

see e.g. Cooley and LeRoy, 1985, Simon, 1953, 1954, and others). However, the identifying 

assumptions associated with the sequential selection of the observables link these concepts. Once 

they are added, non-causality based on the Granger-Sims definition implies non-causality based 

on the Robins dynamic potential outcome version, and vice versa. Thus, if such assumptions 

were valid, both approaches would allow tests for zero causal effects. Moreover, the results of 

these tests can be interpreted using the differing intuitions on which these concepts are based.5 

                                                           
3  Faithfulness analysis uses directed acyclical graphs to formalize its assumptions and causal relations. Details on 

directed acyclical graphs in causal analysis can be found, for example, in Pearl (2000). 
4  White (2006) calls these interventions natural experiments. He uses a technically highly sophisticated framework 

that is appropriate for his discussion but neither necessary nor helpful to support the ideas of this paper. 
5  As already mentioned, the literature based on comparing the ceteris paribus approach to causality (based on 

untestable structural assumptions in simultaneous linear models) used by the Cowles commission to the Sims-

Granger approach (e.g. Cooley and LeRoy, 1985) is related, as it is to some extent similar to the potential outcome 

approach. One of the major differences is that the latter is nonparametric and allows arbitrary effect heterogeneity 
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The paper proceeds as follows: Section 2 presents the concepts of (non-) causality based on ob-

servable variables. Section 3 presents the causal model based on potential outcomes in its dy-

namic form and discusses identifying assumptions. Section 4 relates those concepts to each other 

and Section 5 concludes. 

2 Causality based on observable outcomes: Wiener-Granger-Sims non-

causality 

Let us define two stochastic processes { }tD D=  and { }tY Y=  that may not necessarily be statio-

nary. The data available consist of a random sample 0 1( , ,..., ,i i Tid d d  0 1, ,..., )i i Tiy y y  coming from 

independent and identical draws (i=1, …, N) from the random variables within some time win-

dow of those processes 0 1 0 1( , ,..., , , ,..., )T TD D D Y Y Y . The question is whether the factors described 

by D are causing changes in the variable Y. We define the terminology calling Y the outcome 

variable (measuring the effect) and D the causing or treatment variable. The latter term is 

common in the biometric and econometric evaluation literature. 

In its original article Granger (1969, p. 428) explains his concept of causation as "We say that Dt 

is causing Yt+1 if we are better able to predict Yt+1 using all available information than if the same 

information without Dt had been used." (notation adjusted; italics added). He distinguishes be-

tween instantaneous causality, when the value of Yt+1 can better be predicted with the value of Dt 

given the history of Dt than without it, and the case when it takes some periods until the effect 

manifests itself in the outcome variables. With a similar concept in mind, Sims (1972, p. 545) 

explains that "… if causality runs from D to Y only, future values of D in the regression [of Y on 

D and perhaps other 'exogenous' variables] should have zero coefficients". Furthermore, they also 

                                                                                                                                                                                            
and avoids explicit modelling of a large set of causal relations simultaneously. Therefore, the formal analysis of 

Cooley and LeRoy (1985) does not carry over to this case.  
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pointed out that a cause must precede any effect of it. Initially, the formalization of these con-

cepts used linear predictors.6 In this context, Hosoya (1977) showed the equivalence of those two 

concepts (see also Florens and Mouchart, 1985). 

Chamberlain (1982), Florens and Mouchart (1982) and Engle, Hendry, and Richard (1983) 

strengthened the conditions by basing the definitions on properties of conditional distribution 

functions instead of conditional means. This has the added virtue that the definitions become 

relevant for all types of economic variables, whether they are related by a linear conditional mean 

or not. In this paper, we adopt this specification as well. To condense notation, the history from 

period 1 to t of D and Y is denoted by 1( ,..., )t tD D D=  and 1( ,..., )t tY Y Y= . The initial conditions 

are collected in 0 0 0( , )A D Y= . Furthermore, letting small letters denote specific values of the 

random variables, Definition 1 formally defines the concept of predictive non-causality: 

Definition 1 (GNSC: Granger-Sims non-causality): 

tD  does not GS-cause 1tY + , if and only if 1 0 0 0| , ; ; ; 1,..., 1.t t t t tY D Y y A a y a t T+ = = ∀ ∀ ∀ = −


7 

Note that we slightly deviate from the Chamberlain (1982) notation and condition directly on the 

random variables of the first period observed in the data (initial conditions), as in Engle, Hendry, 

and Richard (1983).8 We do this for the sake of notational simplicity in the comparison of the 

                                                           
6  In those times, econometrics was almost entirely concerned with the estimation of linear relations of continuous 

variables.  
7  1 2( , ) |A B B C c=


 means that A and the elements of B are jointly independent conditional on C taking a value 

of c (i.e. Dawid, 1979). Denoting the cumulative distribution function (cdf) of D conditional on E evaluated at d 

and e as 
| ( , )D EF d e , this statement is equivalent to 

1 2 1 2, , | 1 2 | , | 1 2 1 2( , , , ) ( , ) ( , , ), , ,A B B C A C B B CF a b b c F a c F b b c a b b= ∀ . 

8  Engle, Hendry, and Richard (1983) discuss related, but not identical concepts of strict exogeneity. In that their 

discussion focuses on likelihood functions and the role of their parameters in efficient and consistent estimation, it 

does not lend itself directly to the desired comparison of different concepts of causality. 
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concepts of causality later on. Similarly, further delays of cause and effect may be introduced, but 

they are an unnecessary complication for the purpose of this paper.9 

Sims (1972) proposed an alternative, but similar definition of non-causality, which in its inde-

pendence version proposed by Chamberlain (1982), is given by 1 0( ,..., ) | ,T t t tY Y D Y A+  . It is a 

direct implication of Definition 1 (but not vice versa). Although, it has some intuitive appeal in 

that there is an absence of correlation between current intervention and future outcomes given 

past outcomes, there exists an ambiguity about the causal implication from not conditioning on 

past interventions D (which is equivalent to assuming the independence of Dt, but not of tD ). 

Whereas in this paper we focus on the (full) effect of D on Y, the Sims definition only seems to 

capture part of that. In particular, this is case when the time horizon is finite, as will be assumed 

here. The lagged effects of the intervention may be 'absorbed' in the conditioning set.  

Chamberlain (1982) suggests an alternative and stronger version of the Sims's definition that 

conditions on the past values of D as well as 1 1 0( ,..., ) | , ,T t t t tY Y D Y D A+ −  

. This stronger 

version results in a definition, which is equivalent to the Granger definition (i.e. Chamberlain, 

1982). This equivalence holds true as long as all conditioning variables are treated symmetrically, 

i.e. as long as they can be subsumed in Y. Using different analytical frameworks, Dufour and 

Tessier (1993), Florens and Fougère (1996), and Dufour and Renault (1998) show that this 

equivalence disappears when additional 'control' variables are present, which are influenced by D 

but not included in Y. This non-equivalence result is also contained in Angrist and Kuersteiner 

(2005a, b). Here, for the sake of brevity, we do not consider the original version of Sims (1972) 

explicitly. Instead, we chose the name of Granger-Sims non-causality for the relation stated in 

                                                           
9  Dufour and Renault (1998) study the differences of long run causality from short run causality in a linear model 

by considering different lag lengths between the outcome variable and the causing and conditioning variables. 
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Definition 1 to give credit to both 'inventors' of this type of causality. For the sake of notational 

simplicity, we also refrain from considering conditional versions of the two concepts of 

predictive causality for which the equivalence result does not hold.  

Letting F(.) denote a cumulative distribution function and using short hand notation for the con-

ditioning values, Definition 1 is equivalent to 
1 0| , , 1 0( , , , )

t t tD Y Y A t t tF d y y a
+ + =  

0| , 0( , , )
t TD Y A t TF d y a =  

0| , 0( , , )
t tD Y A t tF d y a , i.e. the distribution of tD  and its elements do not depend on future outcomes 

conditional on the history of the process. Therefore, the joint distribution of all random variables 

may be written as follows: 

0 0 0

1 0 1 0

1 0 1 0

, | 0 | , 0 | 0

| , , 0 | , 0
1 1

| , , 0 | , 0
1 1

( , , ) ( , , ) ( , )

( , , ) ( , )

( , , ) ( , ).

T T T T T

t t T t t

t t t t t

D Y A T T D Y A T T Y A T

T T

D D Y A t T Y Y A t
t t
T T

D D Y A t t Y Y A t
t t

F d y a F d y a F y a

F d y a F y a

F d y a F y a

− −

− −

= =

= =

= =

= =

=

∏ ∏

∏ ∏

 

Furthermore, we have 
1 0| , , 1 0( , , )

t t tY Y D A t tF y d a
+ + =  

1 0| , 1 0( , )
t tY Y A tF y a
+ +  for all t. These conditions can be 

tested by estimating and comparing appropriate distributions using formal test procedures (e.g., 

Li, Maasoumi, Racine, 2008). Furthermore, they have many obvious implications on sample 

counterparts, which can be used for testing as well. 

3 Causal effects defined by potential outcomes: Marshal-Neyman-Rubin-

Robins causality 

3.1 The concept of causality based on potential outcomes 

The approach of potential outcomes has its roots in the idea that a causal effect is a reaction of an 

outcome variable to a manipulation of another variable keeping other factors constant. In eco-
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nomics, this classical ceteris paribus condition is the cornerstone of economic analysis.10 The 

factors kept constant in such an intellectual exercise are typically those not influenced by the in-

tervention but influencing the outcomes. Typically, this is a thought experiment in that it requires 

imagining how the world would have developed had the specific intervention occurred or not. 

Therefore, additional conditions are required before the data can be used for resolving the causal 

question. The statistical formulation was probably based on work by Neyman (1923), Wilks 

(1932), Cochran and Chambers (1965). It has been highly popularized by the works of Rubin 

(1974, 1977, etc.; see also the non-technical overviews contained in Heckman, 2000, or Rubin, 

2005). A similar approach has been proposed in economics by Roy (1951) and already implicitly 

by the Cowles commission. 

To simplify notation, consider a discrete intervention changing the causing variable D from d to 

d'. d and d' differ at least once between 1 and T-1. We are interested in the question whether the 

outcomes would change due to a change in D. As before, we presume that the cause must precede 

its effect. To capture the notion of a c. p. change (i.e. the comparison of two different 'states of 

the world'), we define the outcomes as functions of d as well as of other factors u and compare 

their difference for different values of d and the same value of u. We are interested in the 

difference between Y(d',u) and Y(d,u).11  

                                                           
10  See, for example, the classical works by Marshall (1961), the Cowles Commission (e.g., Haavelmo, 1943, Simon 

1953, 1954), and others, as discussed in the historical account of causal analysis by Heckman (2000), or the 

extensive discussion of ceteris paribus causality provided by Hicks (1979). Heckman (2005) provides an elaborate 

discussion of potential outcome models and how they are embedded in economic theory. 
11  Y(d',u) and Y(d,u) are called potential outcomes, because 'the world cannot be in the two different states at any 

given time'. Therefore, only Y(d',u) or Y(d,u) is observed if one of those two states is realized at all. For a fierce 

attack from the statistical point of view on such a concept of causality, see for example Dawid (2000). Despite 

that critique, this concept appears to be widely used in the sciences and economics, and particularly so in applied 

microeconometrics. For a further discussion, see the excellent exposition of the potential outcome approach by 

Holland (1986).  
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Let us define a causal effect of tD  on 1tY +  given initial conditions 1 1( ; ', , )t t t t ty d d uθ + + =  

1 1( ', ) 1 ( , ) 1( ) ( )
t t t t t tY d u t Y d u tF y F y
+ ++ +− . First, note that here we consider the difference in distribution 

functions instead of the more common average or quantile effects (see e.g. Firpo, 2007). An al-

ternative would be to base the definition on the more general concept of the 'D-parameter' intro-

duced by Manski (1997). The D-parameter encompasses all of the effects that are based on some 

function ( )g ⋅  that respect the inequality ( ) ( )g v g w≥  whenever v stochastically dominates w. Al-

though, those effects include mean as well as quantile effects, they do not include effects, for ex-

ample, on variances or other measures of spread. Thus, we stick to the most stringent definition, 

but the technical discussion applies to mean, quantile, and D-effects only with small and obvious 

changes and some additional regularity conditions (such as the existence of appropriate moments 

for effects based on the comparison of particular moments of the potential outcomes). Although 

this paper does not touch on estimation issues at all, it should be pointed out that the recent 

advances in nonparametrically testing the equality of conditional and unconditional distributions 

mentioned at the end of the previous section make distribution-based definitions more attractive 

for applied work as well. 

Second, this definition is based on the difference of the distribution functions instead of on the 

distribution function of the differences of the potential outcomes. The reasoning behind this is as 

follows: (i) For the distribution function of the differences it is almost impossible to obtain 

consistent estimators under reasonable assumptions for any measures other than linear operators, 

such as averages for which the mean of the difference equals the difference of the means of the 

marginal distributions. Here there is no information in the data useful for nonparametric es-

timation of the joint distribution of the potential outcomes, because no unit can be observed in 

both states at the same time. Therefore, this concept has (almost) never been applied in (non- or 
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semiparametric) empirical studies.12 (ii) Comparing marginal distributions of potential outcomes 

is better suited for a comparison with GSNC and is not distracted with issues irrelevant to 

econometric practice. 

Assume that there is no u data available. Therefore, only effects averaged over some population 

may be estimated with the data, like, 
0 0

1 1 0 1 1| ,
( ; ', , , ) [ ( ; ', , )]

t t t
t t t t t t t t t tu u s A a

y d d s a E y d d uθ θ+ + + +∈ =
=  = 

{ }1 0
0 0

( ', )| 1 0| ,
( , )

t t t
t t t

Y d u A tu u s A a
E F y a

+ +∈ =
−  { }1 0

0 0
( , )| 1 0| ,

( , )
t t t

t t t
Y d u A tu u s A a

E F y a
+ +∈ =

, where st denotes some popula-

tion of interest defined by ut.13 Note that the definition takes the initial condition fully into 

account, however, this is not mentioned explicitly in the discussion below.  

There is an issue here whether non-causality should mean that the causal effect is zero for every 

value of ut (i.e. 1 1( ; ', , ) 0t t t t ty d d uθ + + = ), or just on average for some population. The treatment 

effect literature places much emphasis on the fact that effects may differ in subpopulations de-

fined by D. However, GSNC is formulated as the population as a whole, conditional on initial 

conditions. Therefore, we will only consider (zero) distributional effects averaged for the popula-

tion, denoted by 1 1( ; ', ) 0t t t ty d dθ + + = , to allow for a comparison that focuses on the key 

components of different concepts of causality. This implies that non-causality in all concepts al-

                                                           
12  For attempts to bound effects that are based on the joint distribution, see Heckman, Smith, and Clemens (1997). 

However, their bounds turn out to be so large as to be only of very limited relevance in empirical applications. 
13  ut may contain past values of u, but this is suppressed for notational convenience. For an overview of all the 

different effects discussed in the applied microeconometric literature and an attempt to put them in a unified 

framework, see Heckman and Vytlacil (2005). The emphasis on the effect heterogeneity in different populations 

that appear in many applied studies based on the potential outcome approach is not prominent in GSNC. This is 

probably due to their different origins and fields of application. The potential outcome approach is used frequently 

in fields in which cross-sectional effect heterogeneity is considered important and the data have a large cross-

sectional dimension. Granger-Sims non-causality originates from the time series literature, which historically is 

much less concerned with heterogeneity of causal effects and frequently has to rely on only one draw from the 

population of interest. 
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lows for negative and positive effects at the disaggregated level as long as they wash out for the 

population. Finally, it should be pointed out that for notational simplicity, this notion suppresses 

the dependence of the effect on the initial conditions 0A . 

Definition 2 (potential outcome non-causality, PONC): 

tD  does not PO-cause Yt+1 if and only if 1 1 1( ; ', ) 0, , ' , 1,..., 1.t t t t t t ty d d y d d t Tθ + + += ∀ ∀ ≠ = −  

This notation is adapted to Granger's convention with respect to timing of cause and effect. There 

is a major conceptional difference to the approach presented in the previous section, namely that 

in the potential outcome approach the definition of the effect and its discovery from the data are 

two distinct steps that are considered separately. Therefore, the quantity defined in Definition 2 

cannot be empirically tested without further assumptions. The microeconometric literature has 

discussed numerous ways to identify these causal effects in the data when there are other vari-

ables available. As mentioned before, to concentrate our analysis on the key conceptional differ-

ences between the two definitions of non-causality, we consider the case without any other 

variables, only D and Y. 

3.2 A form of potential outcome causality that can be inferred from the data 

The first link of the observed outcome variables to the potential outcomes is the fact that potential 

outcomes are observed for the value of dt that is realised in the data (dti). This is to say that the 

distribution of the observable outcome conditional on treatment is the same as the distribution of 

the potential outcome related to that treatment and conditional on it (
1 0| , 1 0( , , )

t tY D A t tF y d a
+ + =  

1 0( )| , 1 0( , , )
t t tY d D A t tF y d a
+ + ).14 In the so-called treatment effect literature, this connection is 

                                                           
14  In order to simplify notation, the dependence of outcomes and treatments on ut is left implicit for most of this and 

the following sections. In such cases, ut is integrated out with respect to some distribution, which is obvious from 

the specific context. 
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rationalised by the so-called observation rule that can be stated as 1 11( ) ( )
t

t t t t t
d

Y D d Y d+ += =∑ , 

where 1( )⋅  denotes the indicator function which is one when the element inside the brackets is 

true. This 'observation rule' is closely related to Rubin's (1980) 'Stable Unit Treatment Value 

Assumption' (SUTVA) and Robins' (1986) 'Consistency Condition'. 

Even with the observation rule, we still cannot relate this concept of non-causality to data. For 

example, the observed variables can never uncover an effect like 
1 0( ')| , 1 0( , , )

t t tY d D A t tF y d a
+ + −  

1 0( )| , 1 0( , , )
t t tY d D A t tF y d a
+ + . Although the second term in the difference relates to observables (because 

it concerns the population that is actually observed in that state, thus 
1 0( )| , 1 0( , , )

t t tY d D A t tF y d a
+ + =  

1 0| , 1 0( , , )
t tY D A t tF y d a
+ + ), the first one does not. Therefore, assumptions are required to relate terms 

like 
1 0( ')| , 1 0( , , )

t t tY d D A t tF y d a
+ +  to random variables for which realisations can be found in the data, 

namely elements of 0( , , )T TY D A . Robins (1986, 1989, 1997), Gill and Robins (2001), and 

Lechner and Miquel (2005), among others, analyzed such conditions in similar dynamic causal 

frameworks based on potential outcomes.15 Here, we base our account on a simplified version of 

the econometric dynamic treatment framework using the notation suggested by the latter authors. 

Within that framework, we formulate conditions that allow us to infer some of the 

1 1( ; ', )t t t ty d dθ + +  from the data. Without data other than the realisations from 0( , , )T TY D A , the 

                                                           
15  These papers are based on the so-called selection on observables assumption, which is the route followed below, 

although in a simplified way. Several papers by James Robins and co-authors are concerned with parametric and 

semiparametric estimations of this model, which thus far have been used little or not at all in econometric 

applications (e.g., Hernan, Brumback, and Robins, 2001, Robins, 1999, Robins, Greenland, and Hu, 1999, Robins, 

Rotnitzky, and Scharfstein, 1999). Lechner (2008a, 2008b) discusses weighting and matching estimators and 

points to some practical issues for evaluating labor market programs. Miquel (2002) considers the case of 

selection on unobservables that requires more data than just the outcomes and treatments. Abbring and Heckman 

(2005) provide a survey over dynamic causal models. 
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only way to achieve nonparametric point identification of an average causal effect is to assume 

randomisation, i.e. whether unit 'i' observed in some regime d or d' is to some extent random. Of 

course, the specific type of randomness must be specified exactly.  

Consider the weakest of such assumptions that have appeared in the literature thus far. Namely 

consider the assumption that conditional on the realised history of Y and D (and A0), the next 

realisation of D is independent of the potential outcomes. Such a sequential randomisation 

assumption16 allows the units (economic agents, …) to use the information about the past as 

given by ( 1,t tD Y− ) to select the state tD . This randomisation is conditional on the history of 

treatment and outcome variables. Thus, in period t different units of the population may have 

different probabilities to end up in dt, depending on their past realisations of the outcome and 

treatment variables. This assumption is called the weak dynamic conditional independence 

assumption (W-DCIA) by Lechner and Miquel (2005). It resembles the conditional independence 

assumption (CIA), which is a prominent feature in static analysis. Holland's (1986) argument was 

based on CIA. Dynamic extensions of CIA were initially proposed and formally analyzed by 

Robins (1986). 

Assumption 1 (Weak dynamic conditional independence assumption, W-DCIA) 

1 1 1 1 0 0 0 1

1 1 1 0 0 0

( ) | , ; ; ; ; 1,..., 1;

( ) | , , ; ; ; ; 2,..., ; 2,..., 1.
t t t

t t t t

Y d D Y y A a a d y t T

Y d D Y y D d A a a d y t t Tτ τ τ τ τ τ
+

+ − −

= = ∀ ∀ ∀ ∀ = −

= = = ∀ ∀ ∀ ∀ = ∀ = −





 

Lechner and Miquel (2005) show that although population treatment effects are identified based 

on this assumption, classical treatment on the treated effects, i.e. the effects on the population of 

those units subject to a specific realisation of 1TD − , are not identified. Thus, this assumption ap-
                                                           
16  Due its origins in experimental evaluations, it is common in this literature to call this randomisation instead of 

exogeneity. In fact, depending on the exact formulation of these concepts they may be either very similar or even 

identical (see Imbens, 2004, for further considerations on this topic). 
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pears as a weak version of a dynamic conditional independence assumption.17 However, it suf-

fices for the purpose of this paper because any equivalence result that can be obtained under this 

assumption will also hold under the assumptions that nest W-DCIA.18 Note that in the first period 

there is a static version of the conditional independence assumption as used in Holland (1986). 

Two more conditions are necessary to use the data together with W-DCIA to test PONC. First, it 

is required that realisations of the outcome variables can actually be found for all paths of interest 

of 1TD − . This so-called common support assumption must hold conditionally on past outcomes. 

Second, for this notation to cover a ceteris paribus intervention, it is necessary that the potential 

outcomes for a specific state do not depend on the extent of the intervention. In other words, the 

value of Y(d,u) does not depend on the fact that it is compared with Y(d',u) or Y(d'',u). This leads 

to the previously mentioned observation rule. 

Property 1 (Causal effects with potential outcomes based on W-DCIA) 

If W-DCIA holds true, the causal effects depend on 0 1 0 1( , ,..., , , ,..., )T TD D D Y Y Y  as follows: 

1 0 0 1 0
1 0 0 2 1 1 1 0 1 1 1 0

( )| 1 0 | , , 1 0| | , , | , ,
( , ) ... ( , , , ) ...

t t t t t
t t t t

Y d A a t Y D Y A t t tY A a Y D d Y A Y D d Y A
F y a E E E F y d y a

+ +
− − −

= + += = =

   =      
; 

0; ; .td a t∀ ∀ ∀  

                                                           
17  Note that Assumption 1 differs from White's (2006) DUNE assumption in that it conditions on observed past 

treatments and outcomes. 
18  To identify all usual treatment effects, Lechner and Miquel (2005) suggest a more restrictive version of the W-

DCIA by imposing additional conditions on the way in which past treatments can influence past observed 

outcomes (strong dynamic conditional independence assumption, S-DCIA). Furthermore, if the complete 

treatment path is randomized in the beginning of the first period, then this assumption is stronger than W-DCIA as 

well. 



16 

1 0
1 0 2 1 1 1 0 1 1 1 0

1 0
2 1 1 1 0 1 1 1 0

1 1 | , , 1 0| | ', , | ', ,

| , , 1 0| , , | , ,

( , ', ) ... ( , ', , ) ...

... ( , , , ) ... ;

t t t
t t t t

t t t
t t t t

t t t t Y D Y A t t tY A Y D d Y A Y D d Y A

Y D Y A t t ttY D d Y A Y D d Y A

y d d E E E F y d y a

E E F y d y a y

θ
+

− − −

+
− − −

+ + += =

+= =

   = −    
   ∀     1 0; , '; ; .t t td d a t+ ∀ ∀ ∀

 

The proofs of these properties follow directly from the identification proofs of Robins (1986, 

1989, 1997), Gill and Robins (2001), and Lechner and Miquel (2005). Therefore, they are not 

repeated here. 

As is seen in Property 1, identification is achieved by continuously reweighting the units that 

receive dt towards the distributions of characteristics that describe the population of interest. By 

doing so, the growing number of conditioning variables and time order of variables is respected. 

This is called the g-formula by Robins (1986). 

4 Relation between the different concepts 

4.1 General results 

Note that Definition 1 summarizes the conditions that GSNC imposes on the data. Definition 2 

defines PONC. Property 1 shows how the PO-causal effects depend on the data if either of the 

'identifying' Assumption 1 (W-DCIA) holds true. Hence, if GSNC together with these properties 

imply a zero causal effect ( 1 1 1( , ', ) 0; ; , ';t t t t t t ty d d y d d tθ + + += ∀ ∀ ∀ ), we conclude that GSNC together 

with W-DCIA implies PONC. Conversely, if the restrictions 1 1 1( , ', ) 0; ; , ';t t t t t t ty d d y d d tθ + + += ∀ ∀ ∀  

imposed on Property 1 imply Definition 1, we conclude that the combination of these 

assumptions with PONC implies GSNC. 

However, before considering the combinations of identifying assumptions with causality defini-

tions, we state the obvious in Lemma 1: 
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Lemma 1 (GSNC and PONC only) 

a) GSNC does not imply PONC. 

b) PONC does not imply GSNC. 

This lemma is true, because PONC, without further assumptions, does not impose any restrictions 

on the distribution of 0 1 0 1( , ,..., , , ,..., )T TD D D Y Y Y  that are relevant to GSNC. 

This result may seem trivial. However, it points to the important fact that ceteris paribus 

interventions, which are directly reflected in models based on contrasts of outcomes in two dif-

ferent states of the world, have no consequences for the data, if they are not enriched with further 

(untestable) assumptions. In other words, any restrictions put on the data (in the form of testable 

hypothesis) are silent about underlying causal effects that generated the data unless further un-

testable assumptions are added to relate the potential worlds required to define the effects of c.p. 

interventions to the data. 

The following Theorem 1 shows that the sequential randomisation assumption W-DCIA provides 

the following equivalence results for the different concepts of causality. 

Theorem 1 (GSNC and PONC combined with W-DCIA) 

Suppose Assumption 1 (W-DCIA) holds true and there is common support. 

a) GSNC implies PONC. 

b) PONC together with the monotonicity condition 

1 0 1 0

1 0 1 0

| , , 1 0 | , , 1 0

| , , 1 0 | , , 1 0

( , ', , ) ( , , , ), , 1,..., 1;

( , ', , ) ( , , , ), , 1,..., 1,
t t t t t t

t t t t t t

Y D Y A t t t Y D Y A t t t t

Y D Y A t t t Y D Y A t t t t

F y d y a F y d y a y t T or

F y d y a F y d y a y t T
+ +

+ +

+ +

+ +

≤ ∀ ∀ = −

≥ ∀ ∀ = −
 

implies GSNC. 
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Part a): GSNC implies that the distribution of Yt+1 given past outcomes does not depend on any of 

the past Dt, 
1 0 1 0| , , 1 0 | , 1 0( , , , ) ( , , )

t t t t t tY D d Y A t t t Y Y A t tF y d y a F y y a
+ += + += . This condition leads to an equality of 

the inner terms of the causal effects given in Property 1, i.e. 
1 0| , , 1 0( , ', , )

t t tY D Y A t t tF y d y a
+ + =  

1 0| , , 1 0( , , , )
t t tY D Y A t t tF y d y a
+ + . Furthermore, in that this equality holds for all values of t, the weights 

implied by those iterated expectations are identical as well. Therefore, GSNC implies PONC if 

W-DCIA holds. 

Part b): The monotonicity condition restricts the underlying effect heterogeneity allowed to go 

together with a zero average effect. An alternative would be to define PONC not as a population 

average effect, but relating to all possible subpopulations (which then implies this monotonicity 

condition). Our approach is also somewhat less restrictive than requiring the potential outcomes 

to be the same with a probability of one as in Robins, Greenland, and Hu (1999) as they define 

their 'sharp causal null hypothesis'.  

For the proof it is important to note that W-DCIA comes with an initial condition, i.e. the prob-

lem of the first period is essentially static: 

2 2 1 1( ; ', )y d dθ =
2 1 1 0 2 1 1 0

1 0

!

| , , 2 1 1 0 | , , 2 1 1 0|
[ ( , ', , ) ( , , , )] 0Y D Y A Y D Y AY A

E F y d y a F y d y a− = . 

Assuming that 
1 0| 1 0( , )Y AF y a  is nonzero in the support of interest (as ensured by the common sup-

port assumption), then it must hold true that 
2 1 1 0| , , 2 1 1 0( , ', , )Y D Y AF y d y a =  

2 1 1 0| , , 2 1 1 0( , , , )Y D Y AF y d y a . 

This however has implications for the causal effect in the next period. Consider the zero causal 

effect for period 3: 

3 3 2 2( ; ', )y d dθ =
3 2 2 0 3 2 2 0

1 0 0 2 1 1 1 0 0 2 1 1 1 0 0

!

| , , 3 2 2 0 | , , 3 2 2 0| | ', , | , ,
[ ( , ', , ) ( , , , )] 0Y D Y A Y D Y AY A a Y D d Y A a Y D d Y A a

E E F y d y a E F y d y a
= = = = =

− = .  
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However, because the zero causal effect from the previous period results in 

2 1 1 0| , , 2 1 1 0( , ', , )Y D Y AF y d y a =  
2 1 1 0| , , 2 1 1 0( , , , )Y D Y AF y d y a , the weights appearing in the difference are the 

same. With nonzero weights guaranteed by common support, this condition on the weights im-

plied by PONC, W-DCIA and monotonicity requires that 
3 2 2 0| , , 3 2 2 0( , ', , )Y D Y AF y d y a =  

3 2 2 0| , , 3 2 2 0( , , , )Y D Y AF y d y a . This in turn implies the equality of weights for the next period. Applying 

this reasoning to every period up to period T, it follows that PONC in combination with W-DCIA 

and monotonicity implies 
1 0| , , 1 0( , ', , )

t t tY D Y A t t tF y d y a
+ + =  

1 0| , , 1 0( , , , )
t t tY D Y A t t tF y d y a
+ + . This is exactly the 

condition for GSNC. Note that conditioning on some initial conditions as well as the definition of 

zero effects in all periods plays a key role in this proof. 

4.2 Further issues and generalisations  

This section takes on some issues that are related to simplifications made in this paper with the 

purpose of clarifying the main differences between the different approaches. 

The first such issue relates to additional conditioning (control) variables: All results hold true in 

any subset defined by variables that are not influenced by treatment variables. The previously 

mentioned papers describe the necessary identification results when predetermined variables are 

added to Assumption 1.  

Another interesting type of data that might become available would be instrumental variables, i.e. 

variables that influence D but do not influence Y other than by changing D. In a world of hetero-

geneous causal effects that underlies this paper, such variables identify treatment effects for a 

subpopulation that reacts to changes in the instruments by changes in D, the so-called compliers 

(Imbens and Angrist, 1994). If the instrument is discrete, individual membership in the complier 

population is usually unknown. Thus, since GSNC is not defined for an unobservable subpopula-

tion, there is not much sense in comparing GSNC and PONC for that group. If however the in-
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strument is continuous, every member of the population may become a complier (Heckman and 

Vytlacil, 2005) and a similar analysis as made in this paper, adapted to the dynamic case, is 

appropriate. 

In the comparison of GSNC and PONC, this paper considered PONC for the population instead 

of subpopulations defined by treatment status as would be common in applied mi-

croeconometrics, and in particular in the program evaluation literature (e.g., Heckman, LaLonde, 

and Smith, 1999). If the latter is explicitly taken into account, then for those effects that are actu-

ally identified, Lechner and Miquel's (2005) results show that the structure of the key elements in 

the comparison remains intact. 

5 Conclusion 

This paper highlights issues of uncovering the effects of ceteris paribus interventions with eco-

nometric methods. For quite some time, ceteris paribus interventions are typically thought of by 

economic theorists (like Marshall and Hicks, as examples) as comparisons of different states of 

the world that could have occurred. This paper shows that Granger-Sims non-causality under 

some conditions can indeed detect the absence of such effects. The necessary additional identi-

fying conditions required for the Granger-Sims approach to have this property are, however, not 

empirically testable: they have to be established from outside (theoretical) knowledge about the 

underlying causal structures as has, of course, already been observed at the time of the Cowles 

commission.19 

In this paper, we use the dynamic model of potential outcomes for formally analysing the dif-

ferences between Granger-Sims non-causality and non-causality defined by potential outcomes. 

                                                           
19  "… and since the determination of the causal ordering implies identifiability, the test for spuriousness of the 

correlation requires additional assumptions to be made." (Simon, 1954, p. 479). 
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In general, we find that neither of these concepts implies the other without further assumptions. 

However, the identifying assumptions associated with the sequential selection of the observables 

provide the link between these concepts. Once added, non-causality based on the Granger-Sims 

definition implies non-causality based on the dynamic potential outcome definition, and vice 

versa. Thus, if these specific untestable assumptions are plausible, then tests for zero causal 

effects could be based on either of the approaches.20 Moreover, the results of those tests could be 

interpreted using the differing intuitions behind the different concepts. 

It is worthwhile noting that our findings are unrelated to the main criticism of the Granger-Sims 

approach that appeared in Holland (1986) as well as in other papers. The issue is that the avail-

ability of new data may lead to additional variables entering the information set. This in turn 

implicitly leads to a new definition of Granger-Sims non-causality. In other words, knowing 

more may lead to the result that a variable previously considered a cause becomes a spurious re-

lation. The potential outcome approach in comparison seems immune to that problem, because 

the identification steps are separated from the estimation steps and the available data. However, 

the comparison is probably not entirely fair, because in empirical practice, having new data may 

lead researchers to change their identifying assumptions by increasing the set of conditioning 

variables required for the DCIA assumptions to hold true, and thus the same phenomena as for 

Granger-Sims-non-causality may appear. 
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